BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26968983)

  • 1. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility.
    McKenney RJ; Huynh W; Vale RD; Sirajuddin M
    EMBO J; 2016 Jun; 35(11):1175-85. PubMed ID: 26968983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynactin p150 promotes processive motility of DDB complexes by minimizing diffusional behavior of dynein.
    Feng Q; Gicking AM; Hancock WO
    Mol Biol Cell; 2020 Apr; 31(8):782-792. PubMed ID: 32023147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport.
    Barbosa DJ; Duro J; Prevo B; Cheerambathur DK; Carvalho AX; Gassmann R
    PLoS Genet; 2017 Jul; 13(7):e1006941. PubMed ID: 28759579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Tracking of Dynein-Dynactin-BicD2 Complexes.
    Feng Q; Gicking AM; Hancock WO
    Methods Mol Biol; 2023; 2623():177-186. PubMed ID: 36602686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of Dynein/Dynactin Transport Using Recombinant Dynein.
    Lau CK
    Methods Mol Biol; 2023; 2623():135-156. PubMed ID: 36602684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of dynein-dynactin complex assembly by LIS1.
    Singh K; Lau CK; Manigrasso G; Gama JB; Gassmann R; Carter AP
    Science; 2024 Mar; 383(6690):eadk8544. PubMed ID: 38547289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics and multiregion interactions in dynein-dynactin recognition.
    Morgan JL; Song Y; Barbar E
    J Biol Chem; 2011 Nov; 286(45):39349-59. PubMed ID: 21931160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility.
    Jha R; Roostalu J; Cade NI; Trokter M; Surrey T
    EMBO J; 2017 Nov; 36(22):3387-3404. PubMed ID: 29038173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics.
    Chen J; Kholina E; Szyk A; Fedorov VA; Kovalenko I; Gudimchuk N; Roll-Mecak A
    Dev Cell; 2021 Jul; 56(14):2016-2028.e4. PubMed ID: 34022132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural organization of the dynein-dynactin complex bound to microtubules.
    Chowdhury S; Ketcham SA; Schroer TA; Lander GC
    Nat Struct Mol Biol; 2015 Apr; 22(4):345-7. PubMed ID: 25751425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets.
    Tang Q; Sensale S; Bond C; Xing J; Qiao A; Hugelier S; Arab A; Arya G; Lakadamyali M
    Curr Biol; 2023 Dec; 33(23):5169-5184.e8. PubMed ID: 37979580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin.
    Elshenawy MM; Canty JT; Oster L; Ferro LS; Zhou Z; Blanchard SC; Yildiz A
    Nat Chem Biol; 2019 Nov; 15(11):1093-1101. PubMed ID: 31501589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes.
    Fu G; Yan S; Khoo CJ; Chao VC; Liu Z; Mukhi M; Hervas R; Li XD; Ti SC
    Cell Rep; 2023 Jun; 42(6):112653. PubMed ID: 37379209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail.
    Fan X; McKenney RJ
    Nat Commun; 2023 Aug; 14(1):4715. PubMed ID: 37543636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein.
    Tisdale EJ; Azizi F; Artalejo CR
    J Biol Chem; 2009 Feb; 284(9):5876-84. PubMed ID: 19106097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tubulin Code in Microtubule Dynamics and Information Encoding.
    Roll-Mecak A
    Dev Cell; 2020 Jul; 54(1):7-20. PubMed ID: 32634400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons.
    Nirschl JJ; Magiera MM; Lazarus JE; Janke C; Holzbaur EL
    Cell Rep; 2016 Mar; 14(11):2637-52. PubMed ID: 26972003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities.
    Suber Y; Alam MNA; Nakos K; Bhakt P; Spiliotis ET
    J Biol Chem; 2023 Sep; 299(9):105084. PubMed ID: 37495111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Tubulin Code, from Molecules to Health and Disease.
    McKenna ED; Sarbanes SL; Cummings SW; Roll-Mecak A
    Annu Rev Cell Dev Biol; 2023 Oct; 39():331-361. PubMed ID: 37843925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules.
    Schneider N; Ludwig H; Nick P
    J Exp Bot; 2015 Apr; 66(7):2001-11. PubMed ID: 25779700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.