These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26969302)

  • 1. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications.
    Griguoli M; Sgritta M; Cherubini E
    J Physiol; 2016 Jul; 594(13):3489-500. PubMed ID: 26969302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca
    Ancatén-González C; Segura I; Alvarado-Sánchez R; Chávez AE; Latorre R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BK Channels in the Central Nervous System.
    Contet C; Goulding SP; Kuljis DA; Barth AL
    Int Rev Neurobiol; 2016; 128():281-342. PubMed ID: 27238267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIM-binding proteins recruit BK-channels to presynaptic release sites adjacent to voltage-gated Ca
    Sclip A; Acuna C; Luo F; Südhof TC
    EMBO J; 2018 Aug; 37(16):. PubMed ID: 29967030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-conductance, calcium-activated potassium channels: structural and functional implications.
    Ghatta S; Nimmagadda D; Xu X; O'Rourke ST
    Pharmacol Ther; 2006 Apr; 110(1):103-16. PubMed ID: 16356551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse.
    Xu JW; Slaughter MM
    J Neurosci; 2005 Aug; 25(33):7660-8. PubMed ID: 16107652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons.
    Li W; Gao SB; Lv CX; Wu Y; Guo ZH; Ding JP; Xu T
    J Cell Physiol; 2007 Aug; 212(2):348-57. PubMed ID: 17523149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BK channels with beta3a subunits generate use-dependent slow afterhyperpolarizing currents by an inactivation-coupled mechanism.
    Zeng XH; Benzinger GR; Xia XM; Lingle CJ
    J Neurosci; 2007 Apr; 27(17):4707-15. PubMed ID: 17460083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits.
    Li Q; Yan J
    Int Rev Neurobiol; 2016; 128():51-90. PubMed ID: 27238261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of synaptic transmission by presynaptic CaMKII and BK channels.
    Wang ZW
    Mol Neurobiol; 2008 Oct; 38(2):153-66. PubMed ID: 18759010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of beta 1 and beta 2 subunits on BK channel activity.
    Orio P; Latorre R
    J Gen Physiol; 2005 Apr; 125(4):395-411. PubMed ID: 15767297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels.
    Oh KH; Abraham LS; Gegg C; Silvestri C; Huang YC; Alkema MJ; Furst J; Raicu D; Kim H
    BMC Neurosci; 2015 Apr; 16():26. PubMed ID: 25907097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain.
    Loane DJ; Lima PA; Marrion NV
    J Cell Sci; 2007 Mar; 120(Pt 6):985-95. PubMed ID: 17311846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological properties of BK channels in Xenopus motor nerve terminals.
    Sun XP; Yazejian B; Grinnell AD
    J Physiol; 2004 May; 557(Pt 1):207-28. PubMed ID: 15047773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of large-conductance Ca(2+)-activated K(+) channels depresses basal synaptic transmission in the hippocampal CA1 area in APP (swe/ind) TgCRND8 mice.
    Ye H; Jalini S; Mylvaganam S; Carlen P
    Neurobiol Aging; 2010 Apr; 31(4):591-604. PubMed ID: 18547679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome.
    Deng PY; Klyachko VA
    J Physiol; 2016 Jan; 594(1):83-97. PubMed ID: 26427907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An S6 mutation in BK channels reveals beta1 subunit effects on intrinsic and voltage-dependent gating.
    Wang B; Brenner R
    J Gen Physiol; 2006 Dec; 128(6):731-44. PubMed ID: 17130522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Storm JF
    J Physiol; 2007 May; 580(Pt.3):859-82. PubMed ID: 17303637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of BK(Ca) channels formed by bicistronic expression of hSloalpha and beta1-4 subunits in HEK293 cells.
    Lippiat JD; Standen NB; Harrow ID; Phillips SC; Davies NW
    J Membr Biol; 2003 Mar; 192(2):141-8. PubMed ID: 12682801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.