BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

791 related articles for article (PubMed ID: 26969735)

  • 21. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system.
    Anton T; Bultmann S
    Nucleus; 2017 May; 8(3):279-286. PubMed ID: 28448738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-Luciferase Reporter Assay for Prescreening CRISPR (d)Cas9-Mediated Epigenetic Editing on a Plant Promoter Using Human Cells.
    Hinrichs AK; Koch A; Richter AM
    Methods Mol Biol; 2024; 2788():273-285. PubMed ID: 38656520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases.
    Xiong T; Meister GE; Workman RE; Kato NC; Spellberg MJ; Turker F; Timp W; Ostermeier M; Novina CD
    Sci Rep; 2017 Jul; 7(1):6732. PubMed ID: 28751638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression.
    Sapozhnikov DM; Szyf M
    Nat Protoc; 2022 Dec; 17(12):2840-2881. PubMed ID: 36207463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenome editing strategies for the functional annotation of CTCF insulators.
    Tarjan DR; Flavahan WA; Bernstein BE
    Nat Commun; 2019 Sep; 10(1):4258. PubMed ID: 31534142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.
    Qu J; Zhu L; Zhou Z; Chen P; Liu S; Locy ML; Thannickal VJ; Zhou Y
    Am J Respir Crit Care Med; 2018 Sep; 198(5):599-609. PubMed ID: 29924937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2018; 1767():419-428. PubMed ID: 29524149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers.
    Hilton IB; D'Ippolito AM; Vockley CM; Thakore PI; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2015 May; 33(5):510-7. PubMed ID: 25849900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis.
    Wang M; He L; Chen B; Wang Y; Wang L; Zhou W; Zhang T; Cao L; Zhang P; Xie L; Zhang Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Editing of DNA methylation using CRISPR/Cas9 and a ssDNA template in human cells.
    Katayama S; Andou M
    Biochem Biophys Res Commun; 2021 Dec; 581():20-24. PubMed ID: 34653674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer.
    Wang J; Yang J; Li D; Li J
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188454. PubMed ID: 33075468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correction of aberrant imprinting by allele-specific epigenome editing.
    Bashtrykov P; Kungulovski G; Jeltsch A
    Clin Pharmacol Ther; 2016 May; 99(5):482-4. PubMed ID: 26537177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression.
    O'Geen H; Ren C; Nicolet CM; Perez AA; Halmai J; Le VM; Mackay JP; Farnham PJ; Segal DJ
    Nucleic Acids Res; 2017 Sep; 45(17):9901-9916. PubMed ID: 28973434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of IL12B Expression in Human Macrophages by TALEN-mediated Epigenome Editing.
    Chen M; Zhu H; Mao YJ; Cao N; Yu YL; Li LY; Zhao Q; Wu M; Ye M
    Curr Med Sci; 2020 Oct; 40(5):900-909. PubMed ID: 33123904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9.
    Sapozhnikov DM; Szyf M
    Nat Commun; 2021 Sep; 12(1):5711. PubMed ID: 34588447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.