BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26969739)

  • 1. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report.
    Park SY; Choi JW; Park JK; Song EH; Park SA; Kim YS; Shin YS; Kim CH
    Interact Cardiovasc Thorac Surg; 2016 Jun; 22(6):712-7. PubMed ID: 26969739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report.
    Chang JW; Park SA; Park JK; Choi JW; Kim YS; Shin YS; Kim CH
    Artif Organs; 2014 Jun; 38(6):E95-E105. PubMed ID: 24750044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model.
    Park H; Kim IG; Wu Y; Cho H; Shin JW; Park SA; Chung EJ
    Head Neck; 2021 Mar; 43(3):833-848. PubMed ID: 33241663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes.
    Zheng P; Hu X; Lou Y; Tang K
    Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells.
    Nair MA; Shaik KV; Kokkiligadda A; Gorrela H
    J Med Life; 2020; 13(3):418-425. PubMed ID: 33072218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model.
    Konopnicki S; Sharaf B; Resnick C; Patenaude A; Pogal-Sussman T; Hwang KG; Abukawa H; Troulis MJ
    J Oral Maxillofac Surg; 2015 May; 73(5):1016.e1-1016.e11. PubMed ID: 25883004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo.
    Prosecká E; Rampichová M; Litvinec A; Tonar Z; Králíčková M; Vojtová L; Kochová P; Plencner M; Buzgo M; Míčková A; Jančář J; Amler E
    J Biomed Mater Res A; 2015 Feb; 103(2):671-82. PubMed ID: 24838634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor.
    Park HS; Lee JS; Jung H; Kim DY; Kim SW; Sultan MT; Park CH
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1131-S1140. PubMed ID: 30451550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Morphogenetic Protein-2-Activated 3D-Printed Polylactic Acid Scaffolds to Promote Bone Regrowth and Repair.
    Yao CH; Lai YH; Chen YW; Cheng CH
    Macromol Biosci; 2020 Oct; 20(10):e2000161. PubMed ID: 32749079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head-an in vitro study.
    Wang JQ; Jiang BJ; Guo WJ; Zhao YM
    J Orthop Surg Res; 2019 Apr; 14(1):102. PubMed ID: 30975173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printed Scaffolds with Multipotent Mesenchymal Stromal Cells for Rabbit Mandibular Reconstruction and Engineering.
    Fang D; Roskies M; Abdallah MN; Bakkar M; Jordan J; Lin LC; Tamimi F; Tran SD
    Methods Mol Biol; 2017; 1553():273-291. PubMed ID: 28229424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold.
    Shin YS; Choi JW; Park JK; Kim YS; Yang SS; Min BH; Kim CH
    Ann Biomed Eng; 2015 Apr; 43(4):1003-13. PubMed ID: 25253469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.