These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ozone-induced oxidative modification of fibrinogen: role of the D regions. Rosenfeld MA; Shchegolikhin AN; Bychkova AV; Leonova VB; Biryukova MI; Kostanova EA Free Radic Biol Med; 2014 Dec; 77():106-20. PubMed ID: 25224034 [TBL] [Abstract][Full Text] [Related]
6. The structure and biological features of fibrinogen and fibrin. Mosesson MW; Siebenlist KR; Meh DA Ann N Y Acad Sci; 2001; 936():11-30. PubMed ID: 11460466 [TBL] [Abstract][Full Text] [Related]
7. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. Weisel JW; Veklich Y; Gorkun O J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664 [TBL] [Abstract][Full Text] [Related]
8. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys). Mosesson MW; Siebenlist KR; DiOrio JP; Matsuda M; Hainfeld JF; Wall JS J Clin Invest; 1995 Aug; 96(2):1053-8. PubMed ID: 7635941 [TBL] [Abstract][Full Text] [Related]
9. Does topology drive fiber polymerization? Huang L; Hsiao JP; Powierza C; Taylor RM; Lord ST Biochemistry; 2014 Dec; 53(49):7824-34. PubMed ID: 25419972 [TBL] [Abstract][Full Text] [Related]
10. Role of 'B-b' knob-hole interactions in fibrin binding to adsorbed fibrinogen. Geer CB; Tripathy A; Schoenfisch MH; Lord ST; Gorkun OV J Thromb Haemost; 2007 Dec; 5(12):2344-51. PubMed ID: 17892530 [TBL] [Abstract][Full Text] [Related]
11. Fibrinogen and fibrin. Weisel JW Adv Protein Chem; 2005; 70():247-99. PubMed ID: 15837518 [TBL] [Abstract][Full Text] [Related]
14. B:b interactions are essential for polymerization of variant fibrinogens with impaired holes 'a'. Okumura N; Terasawa F; Haneishi A; Fujihara N; Hirota-Kawadobora M; Yamauchi K; Ota H; Lord ST J Thromb Haemost; 2007 Dec; 5(12):2352-9. PubMed ID: 17922804 [TBL] [Abstract][Full Text] [Related]
15. Substitution of the human αC region with the analogous chicken domain generates a fibrinogen with severely impaired lateral aggregation: fibrin monomers assemble into protofibrils but protofibrils do not assemble into fibers. Ping L; Huang L; Cardinali B; Profumo A; Gorkun OV; Lord ST Biochemistry; 2011 Oct; 50(42):9066-75. PubMed ID: 21932842 [TBL] [Abstract][Full Text] [Related]
16. Fibrinogen assembly and crosslinking on a fibrin fragment E template. Mosesson MW; Siebenlist KR; Hernandez I; Wall JS; Hainfeld JF Thromb Haemost; 2002 Apr; 87(4):651-8. PubMed ID: 12008948 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the fibrin polymer structure that accelerates thrombin cleavage of plasma factor XIII. Greenberg CS; Achyuthan KE; Rajagopalan S; Pizzo SV Arch Biochem Biophys; 1988 Apr; 262(1):142-8. PubMed ID: 2895608 [TBL] [Abstract][Full Text] [Related]
18. Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization. Mosesson MW; Hernandez I; Siebenlist KR Biophys Chem; 2004 Jul; 110(1-2):93-100. PubMed ID: 15223147 [TBL] [Abstract][Full Text] [Related]
19. Characterization of soluble polymerized fibrin formed in the presence of excess fibrinogen fragment D. Knoll D; Hantgan R; Williams J; McDonagh J; Hermans J Biochemistry; 1984 Jul; 23(16):3708-15. PubMed ID: 6236846 [TBL] [Abstract][Full Text] [Related]