These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26970190)

  • 1. -1 Programmed Ribosomal Frameshifting as a Force-Dependent Process.
    Visscher K
    Prog Mol Biol Transl Sci; 2016; 139():45-72. PubMed ID: 26970190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting ribosomal frameshifting efficiency.
    Cao S; Chen SJ
    Phys Biol; 2008 Mar; 5(1):016002. PubMed ID: 18367782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
    Ritchie DB; Foster DA; Woodside MT
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16167-72. PubMed ID: 22988073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamical model of programmed -1 ribosomal frameshifting.
    Xie P
    J Theor Biol; 2013 Nov; 336():119-31. PubMed ID: 23911574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting.
    Caliskan N; Peske F; Rodnina MV
    Trends Biochem Sci; 2015 May; 40(5):265-74. PubMed ID: 25850333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency "-1" and "-2" Ribosomal Frameshiftings Revealed by Force Spectroscopy.
    Tsai TW; Yang H; Yin H; Xu S; Wang Y
    ACS Chem Biol; 2017 Jun; 12(6):1629-1635. PubMed ID: 28437082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the mechanical unfolding of RNA pseudoknots.
    Green L; Kim CH; Bustamante C; Tinoco I
    J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human.
    Ren G; Gu X; Zhang L; Gong S; Song S; Chen S; Chen Z; Wang X; Li Z; Zhou Y; Li L; Yang J; Lai F; Dang Y
    Nucleic Acids Res; 2024 Mar; 52(5):2463-2479. PubMed ID: 38281188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
    Chen G; Chang KY; Chou MY; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12706-11. PubMed ID: 19628688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional restraint: a new twist on frameshifting pseudoknots.
    Plant EP; Dinman JD
    Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs.
    Korniy N; Samatova E; Anokhina MM; Peske F; Rodnina MV
    FEBS Lett; 2019 Jul; 593(13):1468-1482. PubMed ID: 31222875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of RNA elements that regulate gag-pol ribosomal frameshifting in equine infectious anemia virus.
    Chen C; Montelaro RC
    J Virol; 2003 Oct; 77(19):10280-7. PubMed ID: 12970412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.
    Plant EP; Jacobs KL; Harger JW; Meskauskas A; Jacobs JL; Baxter JL; Petrov AN; Dinman JD
    RNA; 2003 Feb; 9(2):168-74. PubMed ID: 12554858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of ribosomal frameshifting by antisense LNA.
    Yu CH; Noteborn MH; Olsthoorn RC
    Nucleic Acids Res; 2010 Dec; 38(22):8277-83. PubMed ID: 20693527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting.
    Yang L; Zhong Z; Tong C; Jia H; Liu Y; Chen G
    J Am Chem Soc; 2018 Jul; 140(26):8172-8184. PubMed ID: 29884019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast.
    Sundararajan A; Michaud WA; Qian Q; Stahl G; Farabaugh PJ
    Mol Cell; 1999 Dec; 4(6):1005-15. PubMed ID: 10635325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting.
    Huang WP; Cho CP; Chang KY
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.