These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26970228)

  • 1. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Capacity and High-Rate Discharging of a Coenzyme Q
    Zhang Y; Wang L; Zhang X; Guo L; Wang Y; Peng Z
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relieving the "Sudden Death" of Li-O
    Guo L; Wang J; Gu F; Ma L; Zhao Z; Liu J; Peng Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14753-14758. PubMed ID: 30932476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance Li-O
    Zhou B; Guo L; Zhang Y; Wang J; Ma L; Zhang WH; Fu Z; Peng Z
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.
    Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC
    J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an Understanding of Li
    Liu C; Brant WR; Younesi R; Dong Y; Edström K; Gustafsson T; Zhu J
    ChemSusChem; 2017 Apr; 10(7):1592-1599. PubMed ID: 28247542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions.
    Shu C; Wang J; Long J; Liu HK; Dou SX
    Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Lithium Carbonate Formation in Trace-O
    Zhao Z; Su Y; Peng Z
    J Phys Chem Lett; 2019 Feb; 10(3):322-328. PubMed ID: 30615461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O
    Zhang M; Zou L; Yang C; Chen Y; Shen Z; Bo C
    Nanoscale; 2019 Feb; 11(6):2855-2862. PubMed ID: 30681684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. True Reaction Sites on Discharge in Li-O
    Tan C; Cao D; Zheng L; Shen Y; Chen L; Chen Y
    J Am Chem Soc; 2022 Jan; 144(2):807-815. PubMed ID: 34991315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.
    Zhang Y; Cui Q; Zhang X; McKee WC; Xu Y; Ling S; Li H; Zhong G; Yang Y; Peng Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10717-21. PubMed ID: 27486085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen.
    Mahne N; Renfrew SE; McCloskey BD; Freunberger SA
    Angew Chem Int Ed Engl; 2018 May; 57(19):5529-5533. PubMed ID: 29543372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery.
    Luo X; Wu T; Lu J; Amine K
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.