These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 26970389)
1. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny. Ghashghaie J; Badeck FW; Girardin C; Huignard C; Aydinlis Z; Fonteny C; Priault P; Fresneau C; Lamothe-Sibold M; Streb P; Terwilliger VJ J Exp Bot; 2016 Apr; 67(9):2603-15. PubMed ID: 26970389 [TBL] [Abstract][Full Text] [Related]
2. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants. Ghashghaie J; Badeck FW; Girardin C; Sketriené D; Lamothe-Sibold M; Werner RA Isotopes Environ Health Stud; 2015; 51(1):93-108. PubMed ID: 25704798 [TBL] [Abstract][Full Text] [Related]
3. Opposite carbon isotope discrimination during dark respiration in leaves versus roots - a review. Ghashghaie J; Badeck FW New Phytol; 2014 Feb; 201(3):751-769. PubMed ID: 24251924 [TBL] [Abstract][Full Text] [Related]
4. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Barbour MM; McDowell NG; Tcherkez G; Bickford CP; Hanson DT Plant Cell Environ; 2007 Apr; 30(4):469-82. PubMed ID: 17324233 [TBL] [Abstract][Full Text] [Related]
6. Carbon Isotope Composition of Nighttime Leaf-Respired CO2 in the Agricultural-Pastoral Zone of the Songnen Plain, Northeast China. Cui H; Wang Y; Jiang Q; Chen S; Ma JY; Sun W PLoS One; 2015; 10(9):e0137575. PubMed ID: 26356083 [TBL] [Abstract][Full Text] [Related]
7. On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light-acclimated leaves in Ricinus communis. Gessler A; Tcherkez G; Karyanto O; Keitel C; Ferrio JP; Ghashghaie J; Kreuzwieser J; Farquhar GD New Phytol; 2009 Jan; 181(2):374-386. PubMed ID: 19121034 [TBL] [Abstract][Full Text] [Related]
8. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species. Salmon Y; Buchmann N; Barnard RL PLoS One; 2016; 11(3):e0151583. PubMed ID: 27010947 [TBL] [Abstract][Full Text] [Related]
9. Metabolic origin of the delta13C of respired CO2 in roots of Phaseolus vulgaris. Bathellier C; Tcherkez G; Bligny R; Gout E; Cornic G; Ghashghaie J New Phytol; 2009 Jan; 181(2):387-399. PubMed ID: 19021866 [TBL] [Abstract][Full Text] [Related]
10. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Tcherkez G; Nogués S; Bleton J; Cornic G; Badeck F; Ghashghaie J Plant Physiol; 2003 Jan; 131(1):237-44. PubMed ID: 12529531 [TBL] [Abstract][Full Text] [Related]
11. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species. Lehmann MM; Wegener F; Werner RA; Werner C Plant Biol (Stuttg); 2016 Sep; 18(5):776-84. PubMed ID: 27086877 [TBL] [Abstract][Full Text] [Related]
12. Rapid changes in δ¹³C of ecosystem-respired CO₂ after sunset are consistent with transient ¹³C enrichment of leaf respired CO₂. Barbour MM; Hunt JE; Kodama N; Laubach J; McSeveny TM; Rogers GND; Tcherkez G; Wingate L New Phytol; 2011 Jun; 190(4):990-1002. PubMed ID: 21294737 [TBL] [Abstract][Full Text] [Related]
13. Nitrate and ammonium differ in their impact on δ Ghiasi S; Lehmann MM; Badeck FW; Ghashghaie J; Hänsch R; Meinen R; Streb S; Hüdig M; Ruckle ME; Carrera DÁ; Siegwolf RTW; Buchmann N; Werner RA Isotopes Environ Health Stud; 2021 Mar; 57(1):11-34. PubMed ID: 32885670 [TBL] [Abstract][Full Text] [Related]
14. Large daily variation in 13C-enrichment of leaf-respired CO2 in two Quercus forest canopies. Hymus GJ; Maseyk K; Valentini R; Yakir D New Phytol; 2005 Aug; 167(2):377-84. PubMed ID: 15998391 [TBL] [Abstract][Full Text] [Related]
15. Below-ground partitioning (14C) and isotopic fractionation (delta13C) of carbon recently assimilated by maize. Werth M; Kuzyakov Y Isotopes Environ Health Stud; 2005 Sep; 41(3):237-48. PubMed ID: 16126520 [TBL] [Abstract][Full Text] [Related]
16. Evaluating high time-resolved changes in carbon isotope ratio of respired CO2 by a rapid in-tube incubation technique. Werner C; Hasenbein N; Maia R; Beyschlag W; Máguas C Rapid Commun Mass Spectrom; 2007; 21(8):1352-60. PubMed ID: 17348086 [TBL] [Abstract][Full Text] [Related]
17. Comparisons of delta13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Scartazza A; Mata C; Matteucci G; Yakir D; Moscatello S; Brugnoli E Oecologia; 2004 Jul; 140(2):340-51. PubMed ID: 15150655 [TBL] [Abstract][Full Text] [Related]
18. The 13C/12C isotopic signal of day-respired CO2 in variegated leaves of Pelargonium × hortorum. Tcherkez G; Mauve C; Lamothe M; Le Bras C; Grapin A Plant Cell Environ; 2011 Feb; 34(2):270-83. PubMed ID: 20955224 [TBL] [Abstract][Full Text] [Related]
19. Partitioning respiration of C3-C4 mixed communities using the natural abundance 13C approach--testing assumptions in a controlled environment. Schnyder H; Lattanzi FA Plant Biol (Stuttg); 2005 Nov; 7(6):592-600. PubMed ID: 16388462 [TBL] [Abstract][Full Text] [Related]
20. Species-specific differences in temporal and spatial variation in δ(13)C of plant carbon pools and dark-respired CO (2) under changing environmental conditions. Dubbert M; Rascher KG; Werner C Photosynth Res; 2012 Sep; 113(1-3):297-309. PubMed ID: 22618996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]