BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26970624)

  • 1. Zygotic Genome Activators, Developmental Timing, and Pluripotency.
    Onichtchouk D; Driever W
    Curr Top Dev Biol; 2016; 116():273-97. PubMed ID: 26970624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development.
    Onichtchouk D; Geier F; Polok B; Messerschmidt DM; Mössner R; Wendik B; Song S; Taylor V; Timmer J; Driever W
    Mol Syst Biol; 2010; 6():354. PubMed ID: 20212526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pou5f1 transcription factor controls zygotic gene activation in vertebrates.
    Leichsenring M; Maes J; Mössner R; Driever W; Onichtchouk D
    Science; 2013 Aug; 341(6149):1005-9. PubMed ID: 23950494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation.
    Veil M; Yampolsky LY; Grüning B; Onichtchouk D
    Genome Res; 2019 Mar; 29(3):383-395. PubMed ID: 30674556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the mammalian embryonic pluripotency gene regulatory network.
    Fernandez-Tresguerres B; Cañon S; Rayon T; Pernaute B; Crespo M; Torroja C; Manzanares M
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19955-60. PubMed ID: 21048080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and functions of Oct4 homologs in non-mammalian vertebrates.
    Onichtchouk D
    Biochim Biophys Acta; 2016 Jun; 1859(6):770-9. PubMed ID: 27058398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition.
    Lee MT; Bonneau AR; Takacs CM; Bazzini AA; DiVito KR; Fleming ES; Giraldez AJ
    Nature; 2013 Nov; 503(7476):360-4. PubMed ID: 24056933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pou5f1/oct4 in pluripotency control: insights from zebrafish.
    Onichtchouk D
    Genesis; 2012 Feb; 50(2):75-85. PubMed ID: 21913309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanog, Oct4 and Tet1 interplay in establishing pluripotency.
    Olariu V; Lövkvist C; Sneppen K
    Sci Rep; 2016 May; 6():25438. PubMed ID: 27146218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip110 Deletion Impaired Embryonic and Stem Cell Development Involving Downregulation of Stem Cell Factors Nanog, Oct4, and Sox2.
    Whitmill A; Liu Y; Timani KA; Niu Y; He JJ
    Stem Cells; 2017 Jul; 35(7):1674-1686. PubMed ID: 28436127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zic3 is required for maintenance of pluripotency in embryonic stem cells.
    Lim LS; Loh YH; Zhang W; Li Y; Chen X; Wang Y; Bakre M; Ng HH; Stanton LW
    Mol Biol Cell; 2007 Apr; 18(4):1348-58. PubMed ID: 17267691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nile tilapia (Oreochromis niloticus) Nanog co-expression with Pou5f3, transcriptional regulation and biological activity in embyonic development and embryonic cells.
    Bai X; Jianeng L; Zhang Z; Qu X; Tao W; Zhou L; Wang D; Wei J
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 264():110812. PubMed ID: 36396033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.
    Chen X; Xu B; Han X; Mao Z; Chen M; Du G; Talbot P; Wang X; Xia Y
    Arch Toxicol; 2015 Apr; 89(4):635-46. PubMed ID: 24879426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts.
    Simmet K; Zakhartchenko V; Philippou-Massier J; Blum H; Klymiuk N; Wolf E
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2770-2775. PubMed ID: 29483258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation.
    Pálfy M; Schulze G; Valen E; Vastenhouw NL
    PLoS Genet; 2020 Jan; 16(1):e1008546. PubMed ID: 31940339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing reveals a role for OCT4 in human embryogenesis.
    Fogarty NME; McCarthy A; Snijders KE; Powell BE; Kubikova N; Blakeley P; Lea R; Elder K; Wamaitha SE; Kim D; Maciulyte V; Kleinjung J; Kim JS; Wells D; Vallier L; Bertero A; Turner JMA; Niakan KK
    Nature; 2017 Oct; 550(7674):67-73. PubMed ID: 28953884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis of the transcriptional regulatory mechanism of zebrafish pou5f3.
    Kobayashi K; Khan A; Ikeda M; Nakamoto A; Maekawa M; Yamasu K
    Exp Cell Res; 2018 Mar; 364(1):28-41. PubMed ID: 29366809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4.
    Reim G; Brand M
    Development; 2006 Jul; 133(14):2757-70. PubMed ID: 16775002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation.
    Liu R; Li M; Li Z; Hong N; Xu H; Hong Y
    Stem Cell Rev Rep; 2015 Feb; 11(1):11-23. PubMed ID: 25142379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors.
    He M; Zhang R; Jiao S; Zhang F; Ye D; Wang H; Sun Y
    PLoS Biol; 2020 Jul; 18(7):e3000561. PubMed ID: 32702011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.