BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26971168)

  • 1. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.
    Karimi M; Biria D
    Chemosphere; 2016 Jun; 152():166-72. PubMed ID: 26971168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying the catalytic preference of alpha-amylase toward n-alkanes for bioremediation purposes using in silico strategies.
    Pinto ÉSM; Feltes BC; Pedebos C; Dorn M
    J Comput Chem; 2021 Aug; 42(22):1540-1551. PubMed ID: 34018199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes.
    Pinto ÉSM; Dorn M; Feltes BC
    Chemosphere; 2020 Jul; 250():126202. PubMed ID: 32092569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary Trends in Industrial Production of α-amylase.
    Jujjavarapu SE; Dhagat S
    Recent Pat Biotechnol; 2019; 13(1):4-18. PubMed ID: 30810102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Ogbonnaya N; Odiase A
    Acta Sci Pol Technol Aliment; 2012; 11(3):231-8. PubMed ID: 22744943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylase enzyme from Bacillus subtilis S8-18: a potential desizing agent from the marine environment.
    Kalpana BJ; Sindhulakshmi M; Pandian SK
    Biotechnol Appl Biochem; 2014; 61(2):134-44. PubMed ID: 23659677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca
    Salem K; Elgharbi F; Ben Hlima H; Perduca M; Sayari A; Hmida-Sayari A
    Biotechnol Prog; 2020 Jul; 36(4):e2964. PubMed ID: 31951110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806.
    Emtenani S; Asoodeh A; Emtenani S
    Int J Biol Macromol; 2015 Jan; 72():290-8. PubMed ID: 25168843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.
    Sumitani J; Tottori T; Kawaguchi T; Arai M
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of a maltooligosaccharide-forming alpha-amylase from a new Bacillus subtilis KCC103.
    Nagarajan DR; Rajagopalan G; Krishnan C
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):591-7. PubMed ID: 16850297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a.
    Roy JK; Rai SK; Mukherjee AK
    Int J Biol Macromol; 2012 Jan; 50(1):219-29. PubMed ID: 22085756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OPTIMIZATION OF ALKALINE Α-AMYLASE PRODUCTION BY THERMOPHILIC
    Al-Johani NB; Al-Seeni MN; Ahmed YM
    Afr J Tradit Complement Altern Med; 2017; 14(1):288-301. PubMed ID: 28480407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic effect on the desizing efficiency of α-amylase on starch-sized cotton fabrics.
    Hao L; Wang R; Fang K; Liu J
    Carbohydr Polym; 2013 Jul; 96(2):474-80. PubMed ID: 23768589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8.
    Arabacı N; Arıkan B
    Prep Biochem Biotechnol; 2018 May; 48(5):419-426. PubMed ID: 29561221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the relationship between starch molecular conformation and enzymatic hydrolysis efficiency.
    Haixia Z; Xijuan Y; Yongxin S; Guochao G; Qiao W; Li C; Zhiguang C
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132570. PubMed ID: 38782316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alpha-amylases of Bacillus subtilis].
    Varbanets' LD; Myshak KV; Matseliukh OV; Hudzenko OV; Safronova LA; Prykhod'ko VO
    Mikrobiol Z; 2006; 68(2):30-8. PubMed ID: 16786626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad.
    Sarian FD; Janeček Š; Pijning T; Ihsanawati ; Nurachman Z; Radjasa OK; Dijkhuizen L; Natalia D; van der Maarel MJ
    Sci Rep; 2017 Mar; 7():44230. PubMed ID: 28287181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18.
    Kalpana BJ; Pandian SK
    J Basic Microbiol; 2014 Aug; 54(8):802-11. PubMed ID: 23712833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of o-phthalaldehyde modification of alpha-amylases from porcine pancreas and Bacillus subtilis with Taka-amylase A.
    Ueyama H; Chiba Y; Kobayashi M
    Biosci Biotechnol Biochem; 1995 May; 59(5):864-8. PubMed ID: 7787301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.