These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26971450)

  • 1. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.
    Borzenets IV; Shimazaki Y; Jones GF; Craciun MF; Russo S; Yamamoto M; Tarucha S
    Sci Rep; 2016 Mar; 6():23051. PubMed ID: 26971450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor.
    Zhang YT; Deng X; Sun QF; Qiao Z
    Sci Rep; 2015 Oct; 5():14892. PubMed ID: 26450824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-bias Cooper pair splitting.
    Hofstetter L; Csonka S; Baumgartner A; Fülöp G; d'Hollosy S; Nygård J; Schönenberger C
    Phys Rev Lett; 2011 Sep; 107(13):136801. PubMed ID: 22026885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Cooper Pair Splitter.
    Brange F; Prech K; Flindt C
    Phys Rev Lett; 2021 Dec; 127(23):237701. PubMed ID: 34936782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooper pair splitter realized in a two-quantum-dot Y-junction.
    Hofstetter L; Csonka S; Nygård J; Schönenberger C
    Nature; 2009 Oct; 461(7266):960-3. PubMed ID: 19829377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-unity Cooper pair splitting efficiency.
    Schindele J; Baumgartner A; Schönenberger C
    Phys Rev Lett; 2012 Oct; 109(15):157002. PubMed ID: 23102354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooper pair splitting by means of graphene quantum dots.
    Tan ZB; Cox D; Nieminen T; Lähteenmäki P; Golubev D; Lesovik GB; Hakonen PJ
    Phys Rev Lett; 2015 Mar; 114(9):096602. PubMed ID: 25793837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric current in a graphene Cooper pair splitter.
    Tan ZB; Laitinen A; Kirsanov NS; Galda A; Vinokur VM; Haque M; Savin A; Golubev DS; Lesovik GB; Hakonen PJ
    Nat Commun; 2021 Jan; 12(1):138. PubMed ID: 33420055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation.
    Das A; Ronen Y; Heiblum M; Mahalu D; Kretinin AV; Shtrikman H
    Nat Commun; 2012; 3():1165. PubMed ID: 23132015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range Cooper pair splitter with high entanglement production rate.
    Chen W; Shi DN; Xing DY
    Sci Rep; 2015 Jan; 5():7607. PubMed ID: 25556521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter.
    Fülöp G; Domínguez F; d'Hollosy S; Baumgartner A; Makk P; Madsen MH; Guzenko VA; Nygård J; Schönenberger C; Levy Yeyati A; Csonka S
    Phys Rev Lett; 2015 Nov; 115(22):227003. PubMed ID: 26650317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ballistic Graphene Cooper Pair Splitter.
    Pandey P; Danneau R; Beckmann D
    Phys Rev Lett; 2021 Apr; 126(14):147701. PubMed ID: 33891452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Crossed Andreev Reflection in Double-Bilayer Graphene.
    Park GH; Watanabe K; Taniguchi T; Lee GH; Lee HJ
    Nano Lett; 2019 Dec; 19(12):9002-9007. PubMed ID: 31738553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant nonlocal superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire.
    Ueda K; Matsuo S; Kamata H; Baba S; Sato Y; Takeshige Y; Li K; Jeppesen S; Samuelson L; Xu H; Tarucha S
    Sci Adv; 2019 Oct; 5(10):eaaw2194. PubMed ID: 31620554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires.
    Wang G; Dvir T; Mazur GP; Liu CX; van Loo N; Ten Haaf SLD; Bordin A; Gazibegovic S; Badawy G; Bakkers EPAM; Wimmer M; Kouwenhoven LP
    Nature; 2022 Dec; 612(7940):448-453. PubMed ID: 36418399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial Pb on InAs nanowires for quantum devices.
    Kanne T; Marnauza M; Olsteins D; Carrad DJ; Sestoft JE; de Bruijckere J; Zeng L; Johnson E; Olsson E; Grove-Rasmussen K; Nygård J
    Nat Nanotechnol; 2021 Jul; 16(7):776-781. PubMed ID: 33972757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron Waiting Times of a Cooper Pair Splitter.
    Walldorf N; Padurariu C; Jauho AP; Flindt C
    Phys Rev Lett; 2018 Feb; 120(8):087701. PubMed ID: 29542994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P-wave Cooper pair splitting.
    Soller H; Komnik A
    Beilstein J Nanotechnol; 2012; 3():493-500. PubMed ID: 23019543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooper pair splitting in parallel quantum dot Josephson junctions.
    Deacon RS; Oiwa A; Sailer J; Baba S; Kanai Y; Shibata K; Hirakawa K; Tarucha S
    Nat Commun; 2015 Jul; 6():7446. PubMed ID: 26130172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Superconducting Coupling of Quantum Dots via Andreev Bound States in Semiconductor-Superconductor Nanowires.
    Liu CX; Wang G; Dvir T; Wimmer M
    Phys Rev Lett; 2022 Dec; 129(26):267701. PubMed ID: 36608192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.