BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26971669)

  • 1. Acetone production with metabolically engineered strains of Acetobacterium woodii.
    Hoffmeister S; Gerdom M; Bengelsdorf FR; Linder S; Flüchter S; Öztürk H; Blümke W; May A; Fischer RJ; Bahl H; Dürre P
    Metab Eng; 2016 Jul; 36():37-47. PubMed ID: 26971669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous Production of Isopropanol Using Metabolically Engineered
    Höfele F; Schoch T; Oberlies C; Dürre P
    Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii.
    Beck MH; Flaiz M; Bengelsdorf FR; Dürre P
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):687-699. PubMed ID: 31807888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen.
    Arslan K; Schoch T; Höfele F; Herrschaft S; Oberlies C; Bengelsdorf F; Veiga MC; Dürre P; Kennes C
    Biotechnol J; 2022 May; 17(5):e2100515. PubMed ID: 35077002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention.
    Kantzow C; Mayer A; Weuster-Botz D
    J Biotechnol; 2015 Oct; 212():11-8. PubMed ID: 26239230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii.
    Straub M; Demler M; Weuster-Botz D; Dürre P
    J Biotechnol; 2014 May; 178():67-72. PubMed ID: 24637370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.
    Bengelsdorf FR; Poehlein A; Linder S; Erz C; Hummel T; Hoffmeister S; Daniel R; Dürre P
    Front Microbiol; 2016; 7():1036. PubMed ID: 27458439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.
    Cooksley CM; Zhang Y; Wang H; Redl S; Winzer K; Minton NP
    Metab Eng; 2012 Nov; 14(6):630-41. PubMed ID: 22982601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.
    Groher A; Weuster-Botz D
    J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.
    Steger F; Rachbauer L; Windhagauer M; Montgomery LFR; Bochmann G
    Anaerobe; 2017 Aug; 46():96-103. PubMed ID: 28648471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clean in-frame knockout system for gene deletion in Acetobacterium woodii.
    Baker JP; Sáez-Sáez J; Jensen SI; Nielsen AT; Minton NP
    J Biotechnol; 2022 Jul; 353():9-18. PubMed ID: 35659892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.
    Lehmann D; Hönicke D; Ehrenreich A; Schmidt M; Weuster-Botz D; Bahl H; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 May; 94(3):743-54. PubMed ID: 22246530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways.
    Moreira JPC; Heap JT; Alves JI; Domingues L
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autotrophic lactate production from H
    Mook A; Beck MH; Baker JP; Minton NP; Dürre P; Bengelsdorf FR
    Appl Microbiol Biotechnol; 2022 Feb; 106(4):1447-1458. PubMed ID: 35092454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isobutanol Production by Autotrophic Acetogenic Bacteria.
    Weitz S; Hermann M; Linder S; Bengelsdorf FR; Takors R; Dürre P
    Front Bioeng Biotechnol; 2021; 9():657253. PubMed ID: 33912549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.
    Cheng HH; Syu JC; Tien SY; Whang LM
    Bioresour Technol; 2018 Aug; 262():229-234. PubMed ID: 29709841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli carrying the hybrid acetone-biosynthesis pathway for efficient acetone biosynthesis from acetate.
    Yang H; Huang B; Lai N; Gu Y; Li Z; Ye Q; Wu H
    Microb Cell Fact; 2019 Jan; 18(1):6. PubMed ID: 30642338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified pathway for the production of acetone in Escherichia coli.
    May A; Fischer RJ; Maria Thum S; Schaffer S; Verseck S; Dürre P; Bahl H
    Metab Eng; 2013 Jan; 15():218-25. PubMed ID: 22906955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.
    Kantzow C; Weuster-Botz D
    Bioprocess Biosyst Eng; 2016 Aug; 39(8):1325-30. PubMed ID: 27059835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.