These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26971705)

  • 1. Mini review: ATP-dependent proteases in bacteria.
    Bittner LM; Arends J; Narberhaus F
    Biopolymers; 2016 Aug; 105(8):505-17. PubMed ID: 26971705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AAA+ proteases: ATP-fueled machines of protein destruction.
    Sauer RT; Baker TA
    Annu Rev Biochem; 2011; 80():587-612. PubMed ID: 21469952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Protein Unfolding and Degradation.
    Olivares AO; Baker TA; Sauer RT
    Annu Rev Physiol; 2018 Feb; 80():413-429. PubMed ID: 29433415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machines of destruction - AAA+ proteases and the adaptors that control them.
    Gur E; Ottofueling R; Dougan DA
    Subcell Biochem; 2013; 66():3-33. PubMed ID: 23479435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines.
    Olivares AO; Baker TA; Sauer RT
    Nat Rev Microbiol; 2016 Jan; 14(1):33-44. PubMed ID: 26639779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-dependent proteases of bacteria: recognition logic and operating principles.
    Baker TA; Sauer RT
    Trends Biochem Sci; 2006 Dec; 31(12):647-53. PubMed ID: 17074491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Lon AAA+ protease.
    Gur E
    Subcell Biochem; 2013; 66():35-51. PubMed ID: 23479436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into substrate recognition and discrimination by the N-terminal domain of Lon AAA+ protease.
    Tzeng SR; Tseng YC; Lin CC; Hsu CY; Huang SJ; Kuo YT; Chang CI
    Elife; 2021 Apr; 10():. PubMed ID: 33929321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FtsH protease-mediated regulation of various cellular functions.
    Okuno T; Ogura T
    Subcell Biochem; 2013; 66():53-69. PubMed ID: 23479437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
    Aubin-Tam ME; Olivares AO; Sauer RT; Baker TA; Lang MJ
    Cell; 2011 Apr; 145(2):257-67. PubMed ID: 21496645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine.
    Kenniston JA; Baker TA; Fernandez JM; Sauer RT
    Cell; 2003 Aug; 114(4):511-20. PubMed ID: 12941278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.
    Lin CC; Su SC; Su MY; Liang PH; Feng CC; Wu SH; Chang CI
    Structure; 2016 May; 24(5):667-675. PubMed ID: 27041592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine.
    Burton RE; Siddiqui SM; Kim YI; Baker TA; Sauer RT
    EMBO J; 2001 Jun; 20(12):3092-100. PubMed ID: 11406586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines.
    Martin A; Baker TA; Sauer RT
    Nature; 2005 Oct; 437(7062):1115-20. PubMed ID: 16237435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease.
    Li S; Hsieh KY; Su SC; Pintilie GD; Zhang K; Chang CI
    J Biol Chem; 2021 Oct; 297(4):101239. PubMed ID: 34563541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the whole cytosolic region of ATP-dependent protease FtsH.
    Suno R; Niwa H; Tsuchiya D; Zhang X; Yoshida M; Morikawa K
    Mol Cell; 2006 Jun; 22(5):575-85. PubMed ID: 16762831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
    Hersch GL; Burton RE; Bolon DN; Baker TA; Sauer RT
    Cell; 2005 Jul; 121(7):1017-27. PubMed ID: 15989952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.