These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Oncogenes, growth factors and control of the cell cycle. Baserga R; Porcu P; Sell C Cancer Surv; 1993; 16():201-13. PubMed ID: 8348536 [TBL] [Abstract][Full Text] [Related]
5. From growth arrest to growth suppression. Philipson L; Sorrentino V J Cell Biochem; 1991 Jun; 46(2):95-101. PubMed ID: 1717501 [TBL] [Abstract][Full Text] [Related]
6. Mutual interactions between p53 and growth factors in cancer. Asschert JG; Vellenga E; De Jong S; de Vries EG Anticancer Res; 1998; 18(3A):1713-25. PubMed ID: 9673395 [TBL] [Abstract][Full Text] [Related]
7. Growth factors and transformation. Roberts AB; Sporn MB Cancer Surv; 1986; 5(2):405-12. PubMed ID: 3779661 [TBL] [Abstract][Full Text] [Related]
8. Transformation-related growth factors and their receptors. Bregman MD; Sipes NJ Int J Cell Cloning; 1986 Jul; 4(4):224-36. PubMed ID: 3018097 [TBL] [Abstract][Full Text] [Related]
9. Cellular oncogenes, growth factors, and cellular growth control. Pardee AB; Campisi J; Gray HE; Dean M; Sonenshein G Symp Fundam Cancer Res; 1984; 37():21-9. PubMed ID: 6528125 [TBL] [Abstract][Full Text] [Related]
10. Growth factors, oncogenes and transformation. Part I: Growth factors and cell cycle control. Paul D Arzneimittelforschung; 1985; 35(4):772-9. PubMed ID: 2990498 [No Abstract] [Full Text] [Related]
11. [Oncogenes--"reckless drivers" on signal pathways controlling cell division]. Johansen T; Bjørkøy G Tidsskr Nor Laegeforen; 1998 May; 118(12):1880-5. PubMed ID: 9638058 [TBL] [Abstract][Full Text] [Related]
12. Non-nuclear oncogenes and the regulation of gene expression in transformed cells. Bortner DM; Langer SJ; Ostrowski MC Crit Rev Oncog; 1993; 4(2):137-60. PubMed ID: 8380545 [TBL] [Abstract][Full Text] [Related]
13. The priming/completion paradigm to explain growth factor-dependent cell cycle progression. Kazlauskas A Growth Factors; 2005 Sep; 23(3):203-10. PubMed ID: 16243712 [TBL] [Abstract][Full Text] [Related]
14. Why do neurotransmitters act like growth factors? Weiss ER; Maness P; Lauder JM Perspect Dev Neurobiol; 1998; 5(4):323-35. PubMed ID: 10533523 [TBL] [Abstract][Full Text] [Related]
15. Oncogenes, growth factors, and signal transduction. Druker BJ; Mamon HJ; Roberts TM N Engl J Med; 1989 Nov; 321(20):1383-91. PubMed ID: 2682241 [No Abstract] [Full Text] [Related]
16. Growth factors and oncogenes in human malignant glioma. Westermark B; Nister M; Heldin CH Neurol Clin; 1985 Nov; 3(4):785-99. PubMed ID: 3001490 [TBL] [Abstract][Full Text] [Related]
17. Erythroid cell development and leukemic transformation: interplay between signal transduction, cell cycle control and oncogenes. Ghysdael J; Tran Quang C; Deiner EM; Dolznig H; Müllner EW; Beug H Pathol Biol (Paris); 2000 Apr; 48(3):211-26. PubMed ID: 10858955 [TBL] [Abstract][Full Text] [Related]
18. WI-38 cell long-term quiescence model system: a valuable tool to study molecular events that regulate growth. Soprano KJ J Cell Biochem; 1994 Apr; 54(4):405-14. PubMed ID: 8014189 [TBL] [Abstract][Full Text] [Related]
19. Cellular mechanisms of tubule hypertrophy and hyperplasia in renal injury. Wolf G Miner Electrolyte Metab; 1995; 21(4-5):303-16. PubMed ID: 7565479 [TBL] [Abstract][Full Text] [Related]