These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26972009)

  • 1. Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent.
    Ke MT; Nakai Y; Fujimoto S; Takayama R; Yoshida S; Kitajima TS; Sato M; Imai T
    Cell Rep; 2016 Mar; 14(11):2718-32. PubMed ID: 26972009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging Using SeeDB2.
    Ke MT; Imai T
    Bio Protoc; 2018 Oct; 8(20):e3046. PubMed ID: 34532520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index.
    Bekkouche BMB; Fritz HKM; Rigosi E; O'Carroll DC
    Front Neuroanat; 2020; 14():599282. PubMed ID: 33328907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging.
    Ryu Y; Kim Y; Lim HR; Kim HJ; Park BS; Kim JG; Park SJ; Ha CM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.
    Young PA; Clendenon SG; Byars JM; Dunn KW
    J Microsc; 2011 May; 242(2):148-56. PubMed ID: 21118239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM.
    Masson A; Escande P; Frongia C; Clouvel G; Ducommun B; Lorenzo C
    Sci Rep; 2015 Nov; 5():16898. PubMed ID: 26576666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy.
    Ryan DP; Gould EA; Seedorf GJ; Masihzadeh O; Abman SH; Vijayaraghavan S; Macklin WB; Restrepo D; Shepherd DP
    Nat Commun; 2017 Sep; 8(1):612. PubMed ID: 28931809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,2'-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy.
    Staudt T; Lang MC; Medda R; Engelhardt J; Hell SW
    Microsc Res Tech; 2007 Jan; 70(1):1-9. PubMed ID: 17131355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging?
    Matryba P; Łukasiewicz K; Pawłowska M; Tomczuk J; Gołąb J
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two simple criteria to estimate an objective's performance when imaging in non design tissue clearing solutions.
    Asteriti S; Ricci V; Cangiano L
    J Neurosci Methods; 2020 Feb; 332():108564. PubMed ID: 31863805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spherical aberration-free microscopy system for live brain imaging.
    Ue Y; Monai H; Higuchi K; Nishiwaki D; Tajima T; Okazaki K; Hama H; Hirase H; Miyawaki A
    Biochem Biophys Res Commun; 2018 Jun; 500(2):236-241. PubMed ID: 29649479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STED Imaging in Drosophila Brain Slices.
    Fendl S; Pujol-Martí J; Ryan J; Borst A; Kasper R
    Methods Mol Biol; 2017; 1563():143-150. PubMed ID: 28324607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of the C-terminal domain of the NR2B subunit alters channel properties and synaptic targeting of N-methyl-D-aspartate receptors in nascent neocortical synapses.
    Mohrmann R; Köhr G; Hatt H; Sprengel R; Gottmann K
    J Neurosci Res; 2002 May; 68(3):265-75. PubMed ID: 12111856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.
    Spühler IA; Conley GM; Scheffold F; Sprecher SG
    Front Cell Neurosci; 2016; 10():142. PubMed ID: 27303270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.
    Schwarz MK; Scherbarth A; Sprengel R; Engelhardt J; Theer P; Giese G
    PLoS One; 2015; 10(5):e0124650. PubMed ID: 25993380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution.
    Zhang H; Yarinome K; Kawakami R; Otomo K; Nemoto T; Okamura Y
    PLoS One; 2020; 15(1):e0227650. PubMed ID: 31923215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion microscopy: A powerful nanoscale imaging tool for neuroscientists.
    Gallagher BR; Zhao Y
    Neurobiol Dis; 2021 Jul; 154():105362. PubMed ID: 33813047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain.
    Ventruti A; Kazdoba TM; Niu S; D'Arcangelo G
    Neuroscience; 2011 Aug; 189():32-42. PubMed ID: 21664258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing.
    Sakhalkar HS; Dewhirst M; Oliver T; Cao Y; Oldham M
    Phys Med Biol; 2007 Apr; 52(8):2035-54. PubMed ID: 17404454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion Microscopy of Plant Cells (PlantExM).
    Hawkins TJ; Robson JL; Cole B; Bush SJ
    Methods Mol Biol; 2023; 2604():127-142. PubMed ID: 36773230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.