BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 26972053)

  • 21. A multiprotein complex negatively regulates RAG GTPases and mTORC1.
    Cancer Discov; 2013 Jul; 3(7):OF24. PubMed ID: 23847368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis.
    Li T; Ju E; Gao SJ
    J Clin Invest; 2019 Jul; 129(8):3310-3323. PubMed ID: 31305263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
    Tsun ZY; Bar-Peled L; Chantranupong L; Zoncu R; Wang T; Kim C; Spooner E; Sabatini DM
    Mol Cell; 2013 Nov; 52(4):495-505. PubMed ID: 24095279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.
    Kwak SS; Kang KH; Kim S; Lee S; Lee JH; Kim JW; Byun B; Meadows GG; Joe CO
    Cell Signal; 2016 Feb; 28(2):32-41. PubMed ID: 26582740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.
    Saxton RA; Knockenhauer KE; Wolfson RL; Chantranupong L; Pacold ME; Wang T; Schwartz TU; Sabatini DM
    Science; 2016 Jan; 351(6268):53-8. PubMed ID: 26586190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation.
    Kimball SR; Gordon BS; Moyer JE; Dennis MD; Jefferson LS
    Cell Signal; 2016 Aug; 28(8):896-906. PubMed ID: 27010498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1.
    Zheng L; Zhang W; Zhou Y; Li F; Wei H; Peng J
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27690010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheb and Rags come together at the lysosome to activate mTORC1.
    Groenewoud MJ; Zwartkruis FJ
    Biochem Soc Trans; 2013 Aug; 41(4):951-5. PubMed ID: 23863162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism. Differential regulation of mTORC1 by leucine and glutamine.
    Jewell JL; Kim YC; Russell RC; Yu FX; Park HW; Plouffe SW; Tagliabracci VS; Guan KL
    Science; 2015 Jan; 347(6218):194-8. PubMed ID: 25567907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1.
    Rebsamen M; Superti-Furga G
    Autophagy; 2016 Jun; 12(6):1061-2. PubMed ID: 26431368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer.
    Chen MB; Wei MX; Han JY; Wu XY; Li C; Wang J; Shen W; Lu PH
    Cell Signal; 2014 Jan; 26(1):102-9. PubMed ID: 23899558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ring domains are essential for GATOR2-dependent mTORC1 activation.
    Jiang C; Dai X; He S; Zhou H; Fang L; Guo J; Liu S; Zhang T; Pan W; Yu H; Fu T; Li D; Inuzuka H; Wang P; Xiao J; Wei W
    Mol Cell; 2023 Jan; 83(1):74-89.e9. PubMed ID: 36528027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in understanding of amino acid signaling to mTORC1 activation.
    Zhuang Y; Wang XX; He J; He S; Yin Y
    Front Biosci (Landmark Ed); 2019 Mar; 24(5):971-982. PubMed ID: 30844724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wdr59 promotes or inhibits TORC1 activity depending on cellular context.
    Zhang Y; Ting CY; Yang S; Reich J; Fru K; Lilly MA
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2212330120. PubMed ID: 36577058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
    Shen K; Rogala KB; Chou HT; Huang RK; Yu Z; Sabatini DM
    Cell; 2019 Nov; 179(6):1319-1329.e8. PubMed ID: 31704029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition.
    Yuan HX; Wang Z; Yu FX; Li F; Russell RC; Jewell JL; Guan KL
    Genes Dev; 2015 Nov; 29(22):2362-76. PubMed ID: 26588989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.