These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26972095)

  • 1. Molecular pathways of chronic kidney disease progression.
    Bienaimé F; Canaud G; El Karoui K; Gallazzini M; Terzi F
    Nephrol Ther; 2016 Apr; 12 Suppl 1():S35-8. PubMed ID: 26972095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking.
    Yammine L; Zablocki A; Baron W; Terzi F; Gallazzini M
    Cell Rep; 2019 Nov; 29(7):2067-2077.e6. PubMed ID: 31722218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remnant nephron physiology and the progression of chronic kidney disease.
    Schnaper HW
    Pediatr Nephrol; 2014 Feb; 29(2):193-202. PubMed ID: 23715783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling pathways predisposing to chronic kidney disease progression.
    Zaidan M; Burtin M; Zhang JD; Blanc T; Barre P; Garbay S; Nguyen C; Vasseur F; Yammine L; Germano S; Badi L; Gubler MC; Gallazzini M; Friedlander G; Pontoglio M; Terzi F
    JCI Insight; 2020 May; 5(9):. PubMed ID: 32376805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors associated with a vicious cycle involving a low nephron number, hypertension and chronic kidney disease.
    Kanzaki G; Tsuboi N; Haruhara K; Koike K; Ogura M; Shimizu A; Yokoo T
    Hypertens Res; 2015 Oct; 38(10):633-41. PubMed ID: 26084263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease.
    Nakagawa S; Nishihara K; Miyata H; Shinke H; Tomita E; Kajiwara M; Matsubara T; Iehara N; Igarashi Y; Yamada H; Fukatsu A; Yanagita M; Matsubara K; Masuda S
    PLoS One; 2015; 10(8):e0136994. PubMed ID: 26317775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways to nephron loss starting from glomerular diseases-insights from animal models.
    Kriz W; LeHir M
    Kidney Int; 2005 Feb; 67(2):404-19. PubMed ID: 15673288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species.
    Samarakoon R; Dobberfuhl AD; Cooley C; Overstreet JM; Patel S; Goldschmeding R; Meldrum KK; Higgins PJ
    Cell Signal; 2013 Nov; 25(11):2198-209. PubMed ID: 23872073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nephron overload as a therapeutic target to maximize kidney lifespan.
    Luyckx VA; Rule AD; Tuttle KR; Delanaye P; Liapis H; Gandjour A; Romagnani P; Anders HJ
    Nat Rev Nephrol; 2022 Mar; 18(3):171-183. PubMed ID: 34880459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution, kidney development, and chronic kidney disease.
    Chevalier RL
    Semin Cell Dev Biol; 2019 Jul; 91():119-131. PubMed ID: 29857053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of mTOR Signaling Is the Major Response Element in the Rescue Pathway of Chronic Kidney Disease in Rats.
    Wang J; Chai L; Lu Y; Lu H; Liu Y; Zhang Y
    Neuroimmunomodulation; 2020; 27(1):9-18. PubMed ID: 32526762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease.
    Canaud G; Bienaimé F; Viau A; Treins C; Baron W; Nguyen C; Burtin M; Berissi S; Giannakakis K; Muda AO; Zschiedrich S; Huber TB; Friedlander G; Legendre C; Pontoglio M; Pende M; Terzi F
    Nat Med; 2013 Oct; 19(10):1288-96. PubMed ID: 24056770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chronic renal insufficiency: 1) adaptation of nephron function in chronic renal insufficiency and 2) progression of chronic renal insufficiency].
    Savin M
    Srp Arh Celok Lek; 1998; 126(7-8):261-70. PubMed ID: 9863393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic Kidney Disease and Exposure to Nephrotoxic Metals.
    Orr SE; Bridges CC
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28498320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nephron number, hypertension, and CKD: physiological and genetic insight from humans and animal models.
    Wang X; Garrett MR
    Physiol Genomics; 2017 Mar; 49(3):180-192. PubMed ID: 28130427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nephrons, podocytes and chronic kidney disease: Strategic antihypertensive therapy for renoprotection.
    Haruhara K; Kanzaki G; Tsuboi N
    Hypertens Res; 2023 Feb; 46(2):299-310. PubMed ID: 36224286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipopolysaccharide Induces Chronic Kidney Injury and Fibrosis through Activation of mTOR Signaling in Macrophages.
    Chen H; Zhu J; Liu Y; Dong Z; Liu H; Liu Y; Zhou X; Liu F; Chen G
    Am J Nephrol; 2015; 42(4):305-17. PubMed ID: 26517816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergetics: the evolutionary basis of progressive kidney disease.
    Chevalier RL
    Physiol Rev; 2023 Oct; 103(4):2451-2506. PubMed ID: 36996412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Normal and pathological renal aging in animals].
    Corman B
    Presse Med; 1992 Jul; 21(26):1238-45. PubMed ID: 1409479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease.
    Li H; Satriano J; Thomas JL; Miyamoto S; Sharma K; Pastor-Soler NM; Hallows KR; Singh P
    Am J Physiol Renal Physiol; 2015 Sep; 309(5):F414-28. PubMed ID: 26136559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.