These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26972311)

  • 1. A Rationally Designed Connector for Assembly of Protein-Functionalized DNA Nanostructures.
    Koßmann KJ; Ziegler C; Angelin A; Meyer R; Skoupi M; Rabe KS; Niemeyer CM
    Chembiochem; 2016 Jun; 17(12):1102-6. PubMed ID: 26972311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly and purification of enzyme-functionalized DNA origami structures.
    Timm C; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6745-50. PubMed ID: 25919336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-Phase Synthesis and Purification of Protein-DNA Origami Nanostructures.
    Burgahn T; Garrecht R; Rabe KS; Niemeyer CM
    Chemistry; 2019 Mar; 25(14):3483-3488. PubMed ID: 30609150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-mediated assembly of cytochrome P450 BM3 subdomains.
    Erkelenz M; Kuo CH; Niemeyer CM
    J Am Chem Soc; 2011 Oct; 133(40):16111-8. PubMed ID: 21919448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Orthogonal Covalent Connector System for the Efficient Assembly of Enzyme Cascades on DNA Nanostructures.
    Kröll S; Rabe KS; Niemeyer CM
    Small; 2021 Dec; 17(51):e2105095. PubMed ID: 34825457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns.
    Yang Y; Endo M; Hidaka K; Sugiyama H
    J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocols for self-assembly and imaging of DNA nanostructures.
    Sobey TL; Simmel FC
    Methods Mol Biol; 2011; 749():13-32. PubMed ID: 21674362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designed Intercalators for Modification of DNA Origami Surface Properties.
    Brglez J; Nikolov P; Angelin A; Niemeyer CM
    Chemistry; 2015 Jun; 21(26):9440-6. PubMed ID: 25974233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoramidate Ligation of Oligonucleotides in Nanoscale Structures.
    Kalinowski M; Haug R; Said H; Piasecka S; Kramer M; Richert C
    Chembiochem; 2016 Jun; 17(12):1150-5. PubMed ID: 27225865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of barcode-like nucleic acid nanostructures.
    Wang P; Tian C; Li X; Mao C
    Small; 2014 Oct; 10(19):3923-6. PubMed ID: 24978689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA binding adaptors to assemble proteins of interest on DNA scaffold.
    Nakata E; Dinh H; Nguyen TM; Morii T
    Methods Enzymol; 2019; 617():287-322. PubMed ID: 30784406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of DNA nanostructures with branched tris-DNA.
    Kuroda T; Sakurai Y; Suzuki Y; Nakamura AO; Kuwahara M; Ozaki H; Sawai H
    Chem Asian J; 2006 Oct; 1(4):575-80. PubMed ID: 17441095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers.
    Zimmermann J; Cebulla MP; Mönninghoff S; von Kiedrowski G
    Angew Chem Int Ed Engl; 2008; 47(19):3626-30. PubMed ID: 18383496
    [No Abstract]   [Full Text] [Related]  

  • 19. Complex DNA nanostructures from oligonucleotide ensembles.
    Mathur D; Henderson ER
    ACS Synth Biol; 2013 Apr; 2(4):180-5. PubMed ID: 23656476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures.
    Suzuki Y; Endo M; Sugiyama H
    Nat Commun; 2015 Aug; 6():8052. PubMed ID: 26310995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.