BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26972592)

  • 41. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Ellendorf U; Tudzynski B; Tudzynski P
    Eukaryot Cell; 2007 Feb; 6(2):211-21. PubMed ID: 17189492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.
    Zhang Z; Qin G; Li B; Tian S
    Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea.
    Yang Q; Jiang J; Mayr C; Hahn M; Ma Z
    Environ Microbiol; 2013 Oct; 15(10):2696-711. PubMed ID: 23601355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of
    Wang G; Song L; Bai T; Liang W
    Mol Plant Microbe Interact; 2020 Oct; 33(10):1242-1251. PubMed ID: 32689887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P
    Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea.
    Shao W; Lv C; Zhang Y; Wang J; Chen C
    Microb Biotechnol; 2017 Jul; 10(4):886-895. PubMed ID: 28474462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea.
    Schumacher J; Studt L; Tudzynski P
    Fungal Genet Biol; 2019 Feb; 123():14-24. PubMed ID: 30445217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin.
    Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S
    Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A; Heller J; Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a).
    Soulié MC; Perino C; Piffeteau A; Choquer M; Malfatti P; Cimerman A; Kunz C; Boccara M; Vidal-Cros A
    Cell Microbiol; 2006 Aug; 8(8):1310-21. PubMed ID: 16882034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of
    Chen X; Zhang X; Zhu P; Wang Y; Na Y; Guo H; Cai Y; Nie H; Jiang Y; Xu L
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326350
    [No Abstract]   [Full Text] [Related]  

  • 52. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii.
    Duan Z; Chen Y; Huang W; Shang Y; Chen P; Wang C
    Autophagy; 2013 Apr; 9(4):538-49. PubMed ID: 23380892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.
    Saitoh Y; Izumitsu K; Morita A; Tanaka C
    Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways.
    Tang J; Sui Z; Li R; Xu Y; Xiang L; Fu S; Wei J; Cai X; Wu M; Zhang J; Chen W; Wei Y; Li G; Yang L
    PLoS Pathog; 2023 Dec; 19(12):e1011839. PubMed ID: 38048363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M
    FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants.
    Valette-Collet O; Cimerman A; Reignault P; Levis C; Boccara M
    Mol Plant Microbe Interact; 2003 Apr; 16(4):360-7. PubMed ID: 12744465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea.
    Sharma E; Tayal P; Anand G; Mathur P; Kapoor R
    Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.
    Antal Z; Rascle C; Cimerman A; Viaud M; Billon-Grand G; Choquer M; Bruel C
    PLoS One; 2012; 7(10):e48134. PubMed ID: 23133556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.