These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26972592)

  • 81. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea.
    Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N
    Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.
    Malmierca MG; Izquierdo-Bueno I; McCormick SP; Cardoza RE; Alexander NJ; Barua J; Lindo L; Casquero PA; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2016 Nov; 18(11):3991-4004. PubMed ID: 27312485
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays.
    Banno S; Fukumori F; Ichiishi A; Okada K; Uekusa H; Kimura M; Fujimura M
    Phytopathology; 2008 Apr; 98(4):397-404. PubMed ID: 18944187
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum.
    Josefsen L; Droce A; Sondergaard TE; Sørensen JL; Bormann J; Schäfer W; Giese H; Olsson S
    Autophagy; 2012 Mar; 8(3):326-37. PubMed ID: 22240663
    [TBL] [Abstract][Full Text] [Related]  

  • 86. γ-Glutamyltransferases (GGT) in Colletotrichum graminicola: mRNA and enzyme activity, and evidence that CgGGT1 allows glutathione utilization during nitrogen deficiency.
    Bello MH; Morin D; Epstein L
    Fungal Genet Biol; 2013 Feb; 51():72-83. PubMed ID: 23207689
    [TBL] [Abstract][Full Text] [Related]  

  • 87. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes.
    Schumacher J
    Mol Microbiol; 2016 Feb; 99(4):729-48. PubMed ID: 26514268
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A Botrytis cinerea emopamil binding domain protein, required for full virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes.
    Gioti A; Pradier JM; Fournier E; Le Pêcheur P; Giraud C; Debieu D; Bach J; Leroux P; Levis C
    Eukaryot Cell; 2008 Feb; 7(2):368-78. PubMed ID: 18156289
    [TBL] [Abstract][Full Text] [Related]  

  • 89. BcHnm1, a predicted choline transporter, modulates conidial germination and virulence in Botrytis cinerea.
    Chand Arya G; Aditya Srivastava D; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A
    Fungal Genet Biol; 2022 Jan; 158():103653. PubMed ID: 34920104
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea.
    Guan W; Feng J; Wang R; Ma Z; Wang W; Wang K; Zhu T
    Curr Genet; 2020 Feb; 66(1):85-95. PubMed ID: 31183512
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea.
    Cantu D; Greve LC; Labavitch JM; Powell AL
    Mycol Res; 2009 Dec; 113(Pt 12):1396-403. PubMed ID: 19781643
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea.
    Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P
    J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea.
    Turrion-Gomez JL; Eslava AP; Benito EP
    Fungal Genet Biol; 2010 May; 47(5):484-96. PubMed ID: 20223291
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Generation and analysis of expressed sequence tags from Botrytis cinerea.
    Silva E; Valdés J; Holmes D; Shmaryahu A; Valenzuela PD
    Biol Res; 2006; 39(2):367-76. PubMed ID: 16874411
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection.
    Kong W; Chen N; Liu T; Zhu J; Wang J; He X; Jin Y
    PLoS One; 2015; 10(11):e0142221. PubMed ID: 26536465
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G; Berndt P; Hahn M
    Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea.
    Müller N; Leroch M; Schumacher J; Zimmer D; Könnel A; Klug K; Leisen T; Scheuring D; Sommer F; Mühlhaus T; Schroda M; Hahn M
    New Phytol; 2018 Aug; 219(3):1062-1074. PubMed ID: 29790574
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum.
    Abro MA; Lecompte F; Bryone F; Nicot PC
    Phytopathology; 2013 Mar; 103(3):261-7. PubMed ID: 23151188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.