These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26972782)
61. Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability. Somnath S; Liu JO; Bakir M; Prater CB; King WP Nanotechnology; 2014 Oct; 25(39):395501. PubMed ID: 25189800 [TBL] [Abstract][Full Text] [Related]
62. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading. Kennedy SJ; Cole DG; Clark RL Rev Sci Instrum; 2009 Dec; 80(12):125103. PubMed ID: 20059166 [TBL] [Abstract][Full Text] [Related]
63. Characterizing Dielectric Permittivity of Nanoscale Dielectric Films by Electrostatic Micro-Probe Technology: Finite Element Simulations. Ren H; Sun WF Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817944 [TBL] [Abstract][Full Text] [Related]
64. Nanoscale dielectric properties of insulating thin films: from single point measurements to quantitative images. Riedel C; Schwartz GA; Arinero R; Tordjeman P; Lévêque G; Alegría A; Colmenero J Ultramicroscopy; 2010 May; 110(6):634-8. PubMed ID: 20206448 [TBL] [Abstract][Full Text] [Related]
65. Direct mapping of the electric permittivity of heterogeneous non-planar thin films at gigahertz frequencies by scanning microwave microscopy. Biagi MC; Badino G; Fabregas R; Gramse G; Fumagalli L; Gomila G Phys Chem Chem Phys; 2017 Feb; 19(5):3884-3893. PubMed ID: 28106185 [TBL] [Abstract][Full Text] [Related]
66. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy. Stan G; King SW; Cook RF Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825 [TBL] [Abstract][Full Text] [Related]
67. Harnessing the damping properties of materials for high-speed atomic force microscopy. Adams JD; Erickson BW; Grossenbacher J; Brugger J; Nievergelt A; Fantner GE Nat Nanotechnol; 2016 Feb; 11(2):147-51. PubMed ID: 26595334 [TBL] [Abstract][Full Text] [Related]
68. Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. Langlois ED; Shaw GA; Kramar JA; Pratt JR; Hurley DC Rev Sci Instrum; 2007 Sep; 78(9):093705. PubMed ID: 17902953 [TBL] [Abstract][Full Text] [Related]
69. Nondestructive and noncontact method for determining the spring constant of rectangular cantilevers. Golovko DS; Haschke T; Wiechert W; Bonaccurso E Rev Sci Instrum; 2007 Apr; 78(4):043705. PubMed ID: 17477668 [TBL] [Abstract][Full Text] [Related]
70. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties. Tamboli MS; Palei PK; Patil SS; Kulkarni MV; Maldar NN; Kale BB Dalton Trans; 2014 Sep; 43(35):13232-41. PubMed ID: 25050918 [TBL] [Abstract][Full Text] [Related]
71. Nanoscale force sensing of an ultrafast nonlinear optical response. Schumacher Z; Rejali R; Pachlatko R; Spielhofer A; Nagler P; Miyahara Y; Cooke DG; Grütter P Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19773-19779. PubMed ID: 32753379 [TBL] [Abstract][Full Text] [Related]
72. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Sahin O; Erina N Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758 [TBL] [Abstract][Full Text] [Related]
73. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy. Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087 [TBL] [Abstract][Full Text] [Related]
74. Analysis of the dielectric permittivity of suspensions by means of the logarithmic derivative of its real part. Jiménez ML; Arroyo FJ; van Turnhout J; Delgado AV J Colloid Interface Sci; 2002 May; 249(2):327-35. PubMed ID: 16290605 [TBL] [Abstract][Full Text] [Related]
75. Traceable Nanoscale Measurements of High Dielectric Constant by Scanning Microwave Microscopy. Richert D; Morán-Meza J; Kaja K; Delvallée A; Allal D; Gautier B; Piquemal F Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835868 [TBL] [Abstract][Full Text] [Related]
76. Variations in properties of atomic force microscope cantilevers fashioned from the same wafer. Webber GB; Stevens GW; Grieser F; Dagastine RR; Chan DY Nanotechnology; 2008 Mar; 19(10):105709. PubMed ID: 21817717 [TBL] [Abstract][Full Text] [Related]
77. Lateral resolution of electrostatic force microscopy for mapping of dielectric interfaces in ambient conditions. Labardi M; Bertolla A; Sollogoub C; Casalini R; Capaccioli S Nanotechnology; 2020 Aug; 31(33):335710. PubMed ID: 32353839 [TBL] [Abstract][Full Text] [Related]
78. A dynamic model of the jump-to phenomenon during AFM analysis. Bowen J; Cheneler D Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559 [TBL] [Abstract][Full Text] [Related]
79. Finite-element vibration analysis of tapping-mode atomic force microscopy in liquid. Song Y; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):1095-104. PubMed ID: 17566661 [TBL] [Abstract][Full Text] [Related]