BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26973698)

  • 1. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.
    Schook LB; Rund L; Begnini KR; Remião MH; Seixas FK; Collares T
    Front Genet; 2016; 7():28. PubMed ID: 26973698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translating Human Cancer Sequences Into Personalized Porcine Cancer Models.
    Xu C; Wu S; Schook LB; Schachtschneider KM
    Front Oncol; 2019; 9():105. PubMed ID: 30873383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Modification Technologies and Their Applications in Avian Species.
    Lee HJ; Kim YM; Ono T; Han JY
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29072628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Missing Link: Cre Pigs for Cancer Research.
    Kalla D; Flisikowski K; Yang K; Sangüesa LB; Kurome M; Kessler B; Zakhartchenko V; Wolf E; Lickert H; Saur D; Schnieke A; Flisikowska T
    Front Oncol; 2021; 11():755746. PubMed ID: 34692545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool.
    Yang F; Liu C; Chen D; Tu M; Xie H; Sun H; Ge X; Tang L; Li J; Zheng J; Song Z; Qu J; Gu F
    Mol Ther Nucleic Acids; 2017 Jun; 7():378-386. PubMed ID: 28624213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo genome editing targeted towards the female reproductive system.
    Sato M; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Gurumurthy CB
    Arch Pharm Res; 2018 Sep; 41(9):898-910. PubMed ID: 29974342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of the porcine species in biomedical research.
    Gutierrez K; Dicks N; Glanzner WG; Agellon LB; Bordignon V
    Front Genet; 2015; 6():293. PubMed ID: 26442109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases.
    Yao J; Huang J; Zhao J
    Hum Genet; 2016 Sep; 135(9):1093-105. PubMed ID: 27432159
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Ma X; Wong AS; Tam HY; Tsui SY; Chung DL; Feng B
    Zool Res; 2018 Mar; 39(2):58-71. PubMed ID: 29515088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Transgenic Core Facility's Experience in Genome Editing Revolution.
    Yuan CL; Hu YC
    Adv Exp Med Biol; 2017; 1016():75-90. PubMed ID: 29130154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.
    Murray JD; Maga EA
    Transgenic Res; 2016 Jun; 25(3):321-7. PubMed ID: 26820413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation.
    Gaba RC; Elkhadragy L; Boas FE; Chaki S; Chen HH; El-Kebir M; Garcia KD; Giurini EF; Guzman G; LoBianco FV; Neto MF; Newson JL; Qazi A; Regan M; Rund LA; Schwind RM; Stewart MC; Thomas FM; Whiteley HE; Wu J; Schook LB; Schachtschneider KM
    Oncotarget; 2020 Jul; 11(28):2686-2701. PubMed ID: 32733642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing in the mammalian brain using the CRISPR-Cas system.
    Nishiyama J
    Neurosci Res; 2019 Apr; 141():4-12. PubMed ID: 30076877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production of multi-transgenic pigs: update and perspectives for xenotransplantation.
    Niemann H; Petersen B
    Transgenic Res; 2016 Jun; 25(3):361-74. PubMed ID: 26820415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal transgenesis now and beyond in the era of genome editing: Snapshots from the 15th Transgenic Technology Meeting (TT2019) in Kobe, Japan.
    Kiyonari H; Furuta Y
    Genes Cells; 2019 Dec; 24(12):762-767. PubMed ID: 31701596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically modified pig models for neurodegenerative disorders.
    Holm IE; Alstrup AK; Luo Y
    J Pathol; 2016 Jan; 238(2):267-87. PubMed ID: 26446984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetically inducible porcine model of intestinal cancer.
    Callesen MM; Árnadóttir SS; Lyskjaer I; Ørntoft MW; Høyer S; Dagnaes-Hansen F; Liu Y; Li R; Callesen H; Rasmussen MH; Berthelsen MF; Thomsen MK; Schweiger PJ; Jensen KB; Laurberg S; Ørntoft TF; Elverløv-Jakobsen JE; Andersen CL
    Mol Oncol; 2017 Nov; 11(11):1616-1629. PubMed ID: 28881081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating porcine biomedical models through recombineering.
    Rogatcheva MM; Rund LA; Swanson KS; Marron BM; Beever JE; Counter CM; Schook LB
    Comp Funct Genomics; 2004; 5(3):262-7. PubMed ID: 18629152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting.
    Kang JT; Ryu J; Cho B; Lee EJ; Yun YJ; Ahn S; Lee J; Ji DY; Lee K; Park KW
    Reprod Domest Anim; 2016 Dec; 51(6):970-978. PubMed ID: 27696566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.