These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26973763)

  • 1. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis.
    Yadeghari S; Malecky M; Dehghan Banadaky M; Navidshad B
    Vet Res Forum; 2015; 6(4):285-93. PubMed ID: 26973763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community.
    Zhou R; Wu J; Lang X; Liu L; Casper DP; Wang C; Zhang L; Wei S
    J Dairy Sci; 2020 Mar; 103(3):2303-2314. PubMed ID: 31954586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers.
    Mohammed N; Ajisaka N; Lila ZA; Hara K; Mikuni K; Hara K; Kanda S; Itabashi H
    J Anim Sci; 2004 Jun; 82(6):1839-46. PubMed ID: 15217012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.
    Paula EM; Monteiro HF; Silva LG; Benedeti PDB; Daniel JLP; Shenkoru T; Broderick GA; Faciola AP
    J Dairy Sci; 2017 Jul; 100(7):5281-5292. PubMed ID: 28456405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.
    Patra AK; Yu Z
    J Dairy Sci; 2013 Jul; 96(7):4592-600. PubMed ID: 23684023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.
    Patra AK; Yu Z
    J Dairy Sci; 2013 Mar; 96(3):1782-92. PubMed ID: 23332846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sunflower oil infusions of Asparagopsis taxiformis on in vitro ruminal methane production and biohydrogenation of polyunsaturated fatty acids.
    Sena F; Portugal PV; Dentinho MT; Paulos K; Costa C; Soares DM; Oliveira A; Ramos H; Alves SP; Santos-Silva J; Bessa RJB
    J Dairy Sci; 2024 Mar; 107(3):1472-1484. PubMed ID: 37944809
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Khodabandehloo M; Malecky M; Aliarabi H; Saki A A; Alipour D
    Iran J Vet Res; 2019; 20(4):263-269. PubMed ID: 32042290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations.
    Patra AK; Yu Z
    Appl Environ Microbiol; 2012 Jun; 78(12):4271-80. PubMed ID: 22492451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in
    Dhakal R; Ronquillo MG; Vargas-Bello-Pérez E; Hansen HH
    Animals (Basel); 2022 Aug; 12(17):. PubMed ID: 36077918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.
    Olijhoek DW; Hellwing ALF; Brask M; Weisbjerg MR; Højberg O; Larsen MK; Dijkstra J; Erlandsen EJ; Lund P
    J Dairy Sci; 2016 Aug; 99(8):6191-6205. PubMed ID: 27236758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S
    J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis.
    Yanza YR; Szumacher-Strabel M; Jayanegara A; Kasenta AM; Gao M; Huang H; Patra AK; Warzych E; Cieślak A
    J Anim Physiol Anim Nutr (Berl); 2021 Sep; 105(5):874-889. PubMed ID: 32333621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cassava Residue Substituting for Crushed Maize on In Vitro Ruminal Fermentation Characteristics of Dairy Cows at Mid-Lactation.
    Zheng Y; Xue S; Zhao Y; Li S
    Animals (Basel); 2020 May; 10(5):. PubMed ID: 32443917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows.
    Liu Q; Wang C; Guo G; Huo WJ; Zhang SL; Pei CX; Zhang YL; Wang H
    Animal; 2018 Oct; 12(10):2071-2079. PubMed ID: 29428005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of essential oils on ruminal fermentation and lactation performance of dairy cows.
    Tekippe JA; Tacoma R; Hristov AN; Lee C; Oh J; Heyler KS; Cassidy TW; Varga GA; Bravo D
    J Dairy Sci; 2013; 96(12):7892-903. PubMed ID: 24119814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.