These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26973851)

  • 41. Developing sequentially trained robust Punjabi speech recognition system under matched and mismatched conditions.
    Bawa P; Kadyan V; Tripathy A; Singh TP
    Complex Intell Systems; 2023; 9(1):1-23. PubMed ID: 35668730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recognizing articulatory gestures from speech for robust speech recognition.
    Mitra V; Nam H; Espy-Wilson C; Saltzman E; Goldstein L
    J Acoust Soc Am; 2012 Mar; 131(3):2270-87. PubMed ID: 22423722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recognizing Whispered Speech Produced by an Individual with Surgically Reconstructed Larynx Using Articulatory Movement Data.
    Cao B; Kim M; Mau T; Wang J
    Workshop Speech Lang Process Assist Technol; 2016 Sep; 2016():80-86. PubMed ID: 29423453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.
    Lozano-Diez A; Zazo R; Toledano DT; Gonzalez-Rodriguez J
    PLoS One; 2017; 12(8):e0182580. PubMed ID: 28796806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.
    Bentsen T; May T; Kressner AA; Dau T
    PLoS One; 2018; 13(5):e0196924. PubMed ID: 29763459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unsupervised Adaptation of Categorical Prosody Models for Prosody Labeling and Speech Recognition.
    Ananthakrishnan S; Narayanan S
    IEEE Trans Audio Speech Lang Process; 2009 Jan; 17(1):138-149. PubMed ID: 19763253
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complex Ratio Masking for Monaural Speech Separation.
    Williamson DS; Wang Y; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2016 Mar; 24(3):483-492. PubMed ID: 27069955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perceptual effects of noise reduction by time-frequency masking of noisy speech.
    Brons I; Houben R; Dreschler WA
    J Acoust Soc Am; 2012 Oct; 132(4):2690-9. PubMed ID: 23039461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Do we need STRFs for cocktail parties? On the relevance of physiologically motivated features for human speech perception derived from automatic speech recognition.
    Kollmeier B; Schädler MR; Meyer A; Anemüller J; Meyer BT
    Adv Exp Med Biol; 2013; 787():333-41. PubMed ID: 23716239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic Assessment of Speech Impairment in Cantonese-speaking People with Aphasia.
    Qin Y; Lee T; Kong APH
    IEEE J Sel Top Signal Process; 2020 Feb; 14(2):331-345. PubMed ID: 32499841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transfer Learning from Adult to Children for Speech Recognition: Evaluation, Analysis and Recommendations.
    Shivakumar PG; Georgiou P
    Comput Speech Lang; 2020 Sep; 63():. PubMed ID: 32372847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SNR-adaptive stream weighting for audio-MES ASR.
    Lee KS
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2001-10. PubMed ID: 18632363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models.
    Ali MN; Falavigna D; Brutti A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational speech segregation based on an auditory-inspired modulation analysis.
    May T; Dau T
    J Acoust Soc Am; 2014 Dec; 136(6):3350. PubMed ID: 25480079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Frame-by-frame language identification in short utterances using deep neural networks.
    Gonzalez-Dominguez J; Lopez-Moreno I; Moreno PJ; Gonzalez-Rodriguez J
    Neural Netw; 2015 Apr; 64():49-58. PubMed ID: 25242129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition.
    Wu J; Yılmaz E; Zhang M; Li H; Tan KC
    Front Neurosci; 2020; 14():199. PubMed ID: 32256308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.