These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26974032)

  • 1. Solid-state NMR studies of supercapacitors.
    Griffin JM; Forse AC; Grey CP
    Solid State Nucl Magn Reson; 2016; 74-75():16-35. PubMed ID: 26974032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Perspectives on the Charging Mechanisms of Supercapacitors.
    Forse AC; Merlet C; Griffin JM; Grey CP
    J Am Chem Soc; 2016 May; 138(18):5731-44. PubMed ID: 27031622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.
    Forse AC; Griffin JM; Merlet C; Bayley PM; Wang H; Simon P; Grey CP
    J Am Chem Soc; 2015 Jun; 137(22):7231-42. PubMed ID: 25973552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.
    Wang H; Forse AC; Griffin JM; Trease NM; Trognko L; Taberna PL; Simon P; Grey CP
    J Am Chem Soc; 2013 Dec; 135(50):18968-80. PubMed ID: 24274637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR.
    Deschamps M; Gilbert E; Azais P; Raymundo-Piñero E; Ammar MR; Simon P; Massiot D; Béguin F
    Nat Mater; 2013 Apr; 12(4):351-8. PubMed ID: 23416727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion counting in supercapacitor electrodes using NMR spectroscopy.
    Griffin JM; Forse AC; Wang H; Trease NM; Taberna PL; Simon P; Grey CP
    Faraday Discuss; 2014; 176():49-68. PubMed ID: 25591456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.
    Simon P; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3457-67. PubMed ID: 20566518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study.
    Sampaio AM; Siqueira LJA
    J Phys Chem B; 2020 Jul; 124(30):6679-6689. PubMed ID: 32633518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic simulations of the
    Sasikumar A; Belhboub A; Bacon C; Forse AC; Griffin JM; Grey CP; Simon P; Merlet C
    Phys Chem Chem Phys; 2021 Aug; 23(30):15925-15934. PubMed ID: 34286771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes.
    Li K; Bo Z; Yan J; Cen K
    Sci Rep; 2016 Dec; 6():39689. PubMed ID: 28000786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.