BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26974267)

  • 1. Reversible Size Modulation of Aqueous Microgels via Orthogonal or Combined Application of Thermo- and Phototriggers.
    Phua DI; Herman K; Balaceanu A; Zakrevski J; Pich A
    Langmuir; 2016 Apr; 32(16):3867-79. PubMed ID: 26974267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers.
    Hu C; Xu W; Conrads CM; Wu J; Pich A
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1075-1084. PubMed ID: 32932178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides.
    Kano M; Kokufuta E
    Langmuir; 2009 Aug; 25(15):8649-55. PubMed ID: 19323452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional selenium modified microgels: temperature-induced phase transitions and network morphology.
    Tan KH; Demco DE; Fechete R; Pich A
    Soft Matter; 2019 Apr; 15(15):3227-3240. PubMed ID: 30916678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.
    Schneider F; Balaceanu A; Feoktystov A; Pipich V; Wu Y; Allgaier J; Pyckhout-Hintzen W; Pich A; Schneider GJ
    Langmuir; 2014 Dec; 30(50):15317-26. PubMed ID: 25493607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Stimuli-Responsive Microgels Crosslinked by Tannic Acid.
    López CM; Pich A
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700808. PubMed ID: 29388283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo- and thermo-responsive microgels with supramolecular crosslinks for wavelength tunability of the volume phase transition temperature.
    Liang W; Lopez CG; Richtering W; Wöll D
    Phys Chem Chem Phys; 2022 Jun; 24(23):14408-14415. PubMed ID: 35642955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and volume phase transitions of glucose-sensitive microgels.
    Zhang Y; Guan Y; Zhou S
    Biomacromolecules; 2006 Nov; 7(11):3196-201. PubMed ID: 17096551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-, thermally, and pH-responsive microgels.
    Garcia A; Marquez M; Cai T; Rosario R; Hu Z; Gust D; Hayes M; Vail SA; Park CD
    Langmuir; 2007 Jan; 23(1):224-9. PubMed ID: 17190508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules.
    Mastour Tehrani S; Lu Y; Guerin G; Soleimani M; Pichugin D; Winnik MA
    Biomacromolecules; 2015 Oct; 16(10):3134-44. PubMed ID: 26335392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots.
    Sun W; Wu P
    Phys Chem Chem Phys; 2016 Dec; 19(1):127-134. PubMed ID: 27901139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume phase transition mechanism of poly[oligo(ethylene glycol)methacrylate] based thermo-responsive microgels with poly(ionic liquid) cross-linkers.
    Zhou Y; Tang H; Wu P
    Phys Chem Chem Phys; 2015 Oct; 17(38):25525-35. PubMed ID: 26366718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature and pH on the contraction and aggregation of microgels in aqueous suspensions.
    Al-Manasir N; Zhu K; Kjøniksen AL; Knudsen KD; Karlsson G; Nyström B
    J Phys Chem B; 2009 Aug; 113(32):11115-23. PubMed ID: 19618921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic PVCL/TBCHA microgels: From synthesis to characterization in a highly selective solvent.
    Gumerov RA; Gau E; Xu W; Melle A; Filippov SA; Sorokina AS; Wolter NA; Pich A; Potemkin II
    J Colloid Interface Sci; 2020 Mar; 564():344-356. PubMed ID: 31918202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels.
    Cao Z; Du B; Chen T; Nie J; Xu J; Fan Z
    Langmuir; 2008 Nov; 24(22):12771-8. PubMed ID: 18950208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling, structure, and phase stability of compressible microgels.
    Urich M; Denton AR
    Soft Matter; 2016 Nov; 12(44):9086-9094. PubMed ID: 27774556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering.
    Fernández-Barbero A; Fernández-Nieves A; Grillo I; López-Cabarcos E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051803. PubMed ID: 12513512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-responsive microgels with cationic moieties: characterization and interaction with
    Hussmann L; Belthle T; Demco DE; Fechete R; Pich A
    Soft Matter; 2021 Oct; 17(38):8678-8692. PubMed ID: 34518865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.