These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26974351)

  • 1. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.
    Grebner C; Iegre J; Ulander J; Edman K; Hogner A; Tyrchan C
    J Chem Inf Model; 2016 Apr; 56(4):774-87. PubMed ID: 26974351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2.
    Baumgartner MP; Evans DA
    J Comput Aided Mol Des; 2018 Jan; 32(1):45-58. PubMed ID: 29127581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation.
    Gao C; Desaphy J; Vieth M
    J Comput Chem; 2017 Jun; 38(15):1229-1237. PubMed ID: 28419481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling.
    Liu W; Liu Z; Liu H; Westerhoff LM; Zheng Z
    J Chem Inf Model; 2022 Nov; 62(22):5645-5665. PubMed ID: 36282990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK.
    Subramanian J; Sharma S; B-Rao C
    ChemMedChem; 2008 Feb; 3(2):336-44. PubMed ID: 18081134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations.
    Yakovenko O; Jones SJM
    J Comput Aided Mol Des; 2018 Jan; 32(1):299-311. PubMed ID: 29134430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Protein-Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations.
    Clark AJ; Tiwary P; Borrelli K; Feng S; Miller EB; Abel R; Friesner RA; Berne BJ
    J Chem Theory Comput; 2016 Jun; 12(6):2990-8. PubMed ID: 27145262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2.
    Rifai EA; van Dijk M; Vermeulen NPE; Geerke DP
    J Comput Aided Mol Des; 2018 Jan; 32(1):239-249. PubMed ID: 28889350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling loop backbone flexibility in receptor-ligand docking simulations.
    Flick J; Tristram F; Wenzel W
    J Comput Chem; 2012 Dec; 33(31):2504-15. PubMed ID: 22886372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the bioactive conformations of macrocycles: a molecular dynamics-based docking procedure with DynaDock.
    Ugur I; Schroft M; Marion A; Glaser M; Antes I
    J Mol Model; 2019 Jun; 25(7):197. PubMed ID: 31222506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided design of GPCR ligands.
    Gutiérrez-de-Terán H; Keränen H; Azuaje J; Rodríguez D; Åqvist J; Sotelo E
    Methods Mol Biol; 2015; 1272():271-91. PubMed ID: 25563191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates.
    Kingsley LJ; Wilson GL; Essex ME; Lill MA
    Pharm Res; 2015 Mar; 32(3):986-1001. PubMed ID: 25208877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible docking allowing induced fit in proteins: insights from an open to closed conformational isomers.
    Sandak B; Wolfson HJ; Nussinov R
    Proteins; 1998 Aug; 32(2):159-74. PubMed ID: 9714156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
    Schindler C; Rippmann F; Kuhn D
    J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive simulations, towards interactive protein-ligand modeling.
    Lecina D; Gilabert JF; Guallar V
    Sci Rep; 2017 Aug; 7(1):8466. PubMed ID: 28814780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.