BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

782 related articles for article (PubMed ID: 26974374)

  • 1. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches.
    Salahuddin P; Fatima MT; Abdelhameed AS; Nusrat S; Khan RH
    Eur J Med Chem; 2016 May; 114():41-58. PubMed ID: 26974374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases.
    Atsmon-Raz Y; Miller Y
    ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of α-Synuclein Fibril Clusters Prevents Fragmentation and Reduces Seeding Activity and Toxicity.
    Lam HT; Graber MC; Gentry KA; Bieschke J
    Biochemistry; 2016 Feb; 55(4):675-85. PubMed ID: 26799377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers.
    Ugalde CL; Finkelstein DI; Lawson VA; Hill AF
    J Neurochem; 2016 Oct; 139(2):162-180. PubMed ID: 27529376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of amyloids in Alzheimer's and Parkinson's diseases.
    Salahuddin P; Fatima MT; Uversky VN; Khan RH; Islam Z; Furkan M
    Int J Biol Macromol; 2021 Nov; 190():44-55. PubMed ID: 34480905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Pairs of Toxic and Nontoxic Misfolded Protein Oligomers Elucidates the Structural Determinants of Oligomer Toxicity in Protein Misfolding Diseases.
    Limbocker R; Cremades N; Cascella R; Tessier PM; Vendruscolo M; Chiti F
    Acc Chem Res; 2023 Jun; 56(12):1395-1405. PubMed ID: 37071750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation-dependent scFv antibodies specifically recognize the oligomers assembled from various amyloids and show colocalization of amyloid fibrils with oligomers in patients with amyloidoses.
    Zhang X; Sun XX; Xue D; Liu DG; Hu XY; Zhao M; Yang SG; Yang Y; Xia YJ; Wang Y; Liu RT
    Biochim Biophys Acta; 2011 Dec; 1814(12):1703-12. PubMed ID: 21979582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases.
    Hashimoto M; Rockenstein E; Crews L; Masliah E
    Neuromolecular Med; 2003; 4(1-2):21-36. PubMed ID: 14528050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.
    Jean L; Thomas B; Tahiri-Alaoui A; Shaw M; Vaux DJ
    PLoS One; 2007 Jul; 2(7):e652. PubMed ID: 17653279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer's disease and other diseases with amyloid deposits.
    Stefani M
    Prog Neurobiol; 2012 Dec; 99(3):226-45. PubMed ID: 22450705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease.
    Drolle E; Hane F; Lee B; Leonenko Z
    Drug Metab Rev; 2014 May; 46(2):207-23. PubMed ID: 24495298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities.
    Foguel D; Suarez MC; Ferrão-Gonzales AD; Porto TC; Palmieri L; Einsiedler CM; Andrade LR; Lashuel HA; Lansbury PT; Kelly JW; Silva JL
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9831-6. PubMed ID: 12900507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Role of Lipids in the Aggregation of Amyloidogenic Proteins.
    Kurouski D
    Acc Chem Res; 2023 Nov; 56(21):2898-2906. PubMed ID: 37824095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins.
    Murphy RM
    Biochim Biophys Acta; 2007 Aug; 1768(8):1923-34. PubMed ID: 17292851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale imaging of individual amyloid aggregates extracted from brains of Alzheimer and Parkinson patients reveals presence of lipids in α-synuclein but not in amyloid β
    Zhaliazka K; Kurouski D
    Protein Sci; 2023 Apr; 32(4):e4598. PubMed ID: 36823759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.