These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26974392)

  • 1. Transfer Printing of Semiconductor Nanowires with Lasing Emission for Controllable Nanophotonic Device Fabrication.
    Guilhabert B; Hurtado A; Jevtics D; Gao Q; Tan HH; Jagadish C; Dawson MD
    ACS Nano; 2016 Apr; 10(4):3951-8. PubMed ID: 26974392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertically Emitting Indium Phosphide Nanowire Lasers.
    Xu WZ; Ren FF; Jevtics D; Hurtado A; Li L; Gao Q; Ye J; Wang F; Guilhabert B; Fu L; Lu H; Zhang R; Tan HH; Dawson MD; Jagadish C
    Nano Lett; 2018 Jun; 18(6):3414-3420. PubMed ID: 29781625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating a Nanowire Laser in an on-Chip Photonic Waveguide.
    Yi R; Zhang X; Zhang F; Gu L; Zhang Q; Fang L; Zhao J; Fu L; Tan HH; Jagadish C; Gan X
    Nano Lett; 2022 Dec; 22(24):9920-9927. PubMed ID: 36516353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire.
    Chen S; Yukimune M; Fujiwara R; Ishikawa F; Chen WM; Buyanova IA
    Nano Lett; 2019 Feb; 19(2):885-890. PubMed ID: 30608174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires.
    Lee WS; Won S; Park J; Lee J; Park I
    Nanoscale; 2012 Jun; 4(11):3444-9. PubMed ID: 22549520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature compressive transfer printing of nanowires for nanoelectronic devices.
    Lee WS; Choi JH; Park I; Lee J
    Langmuir; 2012 Dec; 28(51):17851-8. PubMed ID: 23199260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology.
    Kim S; Cahoon JF
    Acc Chem Res; 2019 Dec; 52(12):3511-3520. PubMed ID: 31799833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing.
    Fan Z; Ho JC; Jacobson ZA; Yerushalmi R; Alley RL; Razavi H; Javey A
    Nano Lett; 2008 Jan; 8(1):20-5. PubMed ID: 17696563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces.
    Han HJ; Jeong JW; Yang SR; Kim C; Yoo HG; Yoon JB; Park JH; Lee KJ; Kim TS; Kim SW; Jung YS
    ACS Nano; 2017 Nov; 11(11):11642-11652. PubMed ID: 29131582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-nanowire electrically driven lasers.
    Duan X; Huang Y; Agarwal R; Lieber CM
    Nature; 2003 Jan; 421(6920):241-5. PubMed ID: 12529637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleaved-coupled nanowire lasers.
    Gao H; Fu A; Andrews SC; Yang P
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):865-9. PubMed ID: 23284173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, Selection, and Microassembly of Nanowire Laser Systems.
    Jevtics D; McPhillimy J; Guilhabert B; Alanis JA; Tan HH; Jagadish C; Dawson MD; Hurtado A; Parkinson P; Strain MJ
    Nano Lett; 2020 Mar; 20(3):1862-1868. PubMed ID: 32017573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices.
    Lin Q; Sarkar D; Lin Y; Yeung M; Blankemeier L; Hazra J; Wang W; Niu S; Ravichandran J; Fan Z; Kapadia R
    ACS Nano; 2017 May; 11(5):5113-5119. PubMed ID: 28463486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes.
    Shi ZF; Zhang YT; Cui XJ; Zhuang SW; Wu B; Chu XW; Dong X; Zhang BL; Du GT
    Phys Chem Chem Phys; 2015 Jun; 17(21):13813-20. PubMed ID: 25803480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods.
    Lee CH; Kim DR; Zheng X
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):9950-5. PubMed ID: 20479263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-color single-mode lasing in axially coupled organic nanowire resonators.
    Zhang C; Zou CL; Dong H; Yan Y; Yao J; Zhao YS
    Sci Adv; 2017 Jul; 3(7):e1700225. PubMed ID: 28785731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas.
    García Núñez C; Liu F; Navaraj WT; Christou A; Shakthivel D; Dahiya R
    Microsyst Nanoeng; 2018; 4():22. PubMed ID: 31057910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires.
    Yang Z; Wang D; Meng C; Wu Z; Wang Y; Ma Y; Dai L; Liu X; Hasan T; Liu X; Yang Q
    Nano Lett; 2014 Jun; 14(6):3153-9. PubMed ID: 24798020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.