These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26974392)

  • 21. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires.
    Yang Z; Wang D; Meng C; Wu Z; Wang Y; Ma Y; Dai L; Liu X; Hasan T; Liu X; Yang Q
    Nano Lett; 2014 Jun; 14(6):3153-9. PubMed ID: 24798020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.
    Ren D; Ahtapodov L; Nilsen JS; Yang J; Gustafsson A; Huh J; Conibeer GJ; van Helvoort ATJ; Fimland BO; Weman H
    Nano Lett; 2018 Apr; 18(4):2304-2310. PubMed ID: 29502425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires.
    Guo P; Zhuang X; Xu J; Zhang Q; Hu W; Zhu X; Wang X; Wan Q; He P; Zhou H; Pan A
    Nano Lett; 2013 Mar; 13(3):1251-6. PubMed ID: 23421772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled 1.1-1.6 μm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires.
    Zhang G; Tateno K; Birowosuto MD; Notomi M; Sogawa T; Gotoh H
    Nanotechnology; 2015 Mar; 26(11):115704. PubMed ID: 25712797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of light-matter interaction in single vertical nanowires in ordered nanowire arrays.
    Li Z; Li L; Wang F; Xu L; Gao Q; Alabadla A; Peng K; Vora K; Hattori HT; Tan HH; Jagadish C; Fu L
    Nanoscale; 2022 Mar; 14(9):3527-3536. PubMed ID: 35171176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature.
    Mayer B; Rudolph D; Schnell J; Morkötter S; Winnerl J; Treu J; Müller K; Bracher G; Abstreiter G; Koblmüller G; Finley JJ
    Nat Commun; 2013; 4():2931. PubMed ID: 24304714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates.
    Birowosuto MD; Zhang G; Yokoo A; Takiguchi M; Notomi M
    Opt Express; 2014 May; 22(10):11713-26. PubMed ID: 24921294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the lasing modes in random lasers operating in the Anderson localization regime.
    Rashidi M; Li Z; Jagadish C; Mokkapati S; Tan HH
    Opt Express; 2021 Oct; 29(21):33548-33557. PubMed ID: 34809165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indium phosphide nanowires and their applications in optoelectronic devices.
    Zafar F; Iqbal A
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150804. PubMed ID: 27118920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.
    Hwang SK; Min SY; Bae I; Cho SM; Kim KL; Lee TW; Park C
    Small; 2014 May; 10(10):1976-84. PubMed ID: 24644019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward electrically driven semiconductor nanowire lasers.
    Zhang Y; Saxena D; Aagesen M; Liu H
    Nanotechnology; 2019 May; 30(19):192002. PubMed ID: 30658345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ZnO nanowire lasers.
    Vanmaekelbergh D; van Vugt LK
    Nanoscale; 2011 Jul; 3(7):2783-800. PubMed ID: 21552596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-frequency-conversion nanowire lasers.
    Yi R; Zhang X; Li C; Zhao B; Wang J; Li Z; Gan X; Li L; Li Z; Zhang F; Fang L; Wang N; Chen P; Lu W; Fu L; Zhao J; Tan HH; Jagadish C
    Light Sci Appl; 2022 Apr; 11(1):120. PubMed ID: 35487898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure.
    Liu S; Li C; Figiel JJ; Brueck SR; Brener I; Wang GT
    Nanoscale; 2015 Jun; 7(21):9581-8. PubMed ID: 25952721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-controlled contact printing for nanowire device fabrication on a large scale.
    Roßkopf D; Strehle S
    Nanotechnology; 2016 May; 27(18):185301. PubMed ID: 27007944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.
    Pial TH; Rakib T; Mojumder S; Motalab M; Akanda MAS
    Phys Chem Chem Phys; 2018 Mar; 20(13):8647-8657. PubMed ID: 29536996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of patterned polymer nanowire arrays.
    Fang H; Yuan D; Guo R; Zhang S; Han RP; Das S; Wang ZL
    ACS Nano; 2011 Feb; 5(2):1476-82. PubMed ID: 21194200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer.
    Zhang W; Yan Y; Gu J; Yao J; Zhao YS
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7125-9. PubMed ID: 25925895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silica Nanowires: Growth, Integration, and Sensing Applications.
    Kaushik A; Kumar R; Huey E; Bhansali S; Nair N; Nanir M
    Mikrochim Acta; 2014 Nov; 181(15-16):1759-1780. PubMed ID: 25382871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption.
    Liu X; Zhang Q; Xiong Q; Sum TC
    Nano Lett; 2013 Mar; 13(3):1080-5. PubMed ID: 23394432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.