These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26974423)

  • 61. Effect of fluid resuscitation with balanced solutions on platelets: In vitro simulation of 20% volume substitution.
    Krzych ŁJ; Czempik PF
    Cardiol J; 2018; 25(2):254-259. PubMed ID: 28497841
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Effect of fluid resuscitation for hemorrhagic shock on oxygenation of subjects in early period of first visit of high altitude area, an experimentation on dogs].
    Wang YF; Geng ZL; Liu D; Liu B; Wang HW; Li T
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2009 May; 21(5):300-3. PubMed ID: 19439120
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluid therapy LiDCO controlled trial-optimization of volume resuscitation of extensively burned patients through noninvasive continuous real-time hemodynamic monitoring LiDCO.
    Tokarik M; Sjöberg F; Balik M; Pafcuga I; Broz L
    J Burn Care Res; 2013; 34(5):537-42. PubMed ID: 23511280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of initial fluid resuscitation on subsequent treatment in uncontrolled hemorrhagic shock in rats.
    Xiao N; Wang XC; Diao YF; Liu R; Tian KL
    Shock; 2004 Mar; 21(3):276-80. PubMed ID: 14770042
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hypothermia reduces resuscitation fluid volumes required to maintain blood pressure in a rat hemorrhagic shock model.
    Nishi K; Takasu A; Shibata M; Uchino S; Yamamoto Y; Sakamoto T
    J Trauma Acute Care Surg; 2012 Jan; 72(1):130-5. PubMed ID: 21768895
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Small volume resuscitation with 3% hypertonic saline solution decrease inflammatory response and attenuates end organ damage after controlled hemorrhagic shock.
    Vincenzi R; Cepeda LA; Pirani WM; Sannomyia P; Rocha-E-Silva M; Cruz RJ
    Am J Surg; 2009 Sep; 198(3):407-14. PubMed ID: 19520355
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies.
    Cotton BA; Guy JS; Morris JA; Abumrad NN
    Shock; 2006 Aug; 26(2):115-21. PubMed ID: 16878017
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Effect of hypotensive fluid resuscitation on microcirculation in an uncontrolled hemorrhagic shock of pregnant rabbits].
    Qin W; Yu YH; Wang CH
    Zhonghua Fu Chan Ke Za Zhi; 2010 Oct; 45(10):775-80. PubMed ID: 21176561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of different fluid resuscitation speeds on blood glucose and interleukin-1 beta in hemorrhagic shock.
    Subeq YM; Peng TC; Hsu BG; Lin NT; Chao YF; Hu TM; Lee RP
    J Trauma; 2009 Mar; 66(3):683-92. PubMed ID: 19276738
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of the effects of hypertonic saline and crystalloid infusions on haemodynamic parameters during haemorrhagic shock in dogs.
    Us MH; Ozkan S; Oral L; Oğuş T; Acar HV; Cakir O; Keskin O; Top C; Gökben M
    J Int Med Res; 2001; 29(6):508-15. PubMed ID: 11803735
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Clinical study of volume resuscitation in children with septic shock].
    Huo X; Wang X; Kang L
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2014 Apr; 26(4):253-7. PubMed ID: 24709498
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A pilot comparison of limited versus large fluid volume resuscitation in canine spontaneous hemoperitoneum.
    Hammond TN; Holm JL; Sharp CR
    J Am Anim Hosp Assoc; 2014; 50(3):159-66. PubMed ID: 24659726
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optimal crystalloid volume ratio for blood replacement for maintaining hemodynamic stability and lung function: an experimental randomized controlled study.
    Fodor GH; Habre W; Balogh AL; Südy R; Babik B; Peták F
    BMC Anesthesiol; 2019 Feb; 19(1):21. PubMed ID: 30760207
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Protocol for a systematic review of the impact of resuscitation fluids on the microcirculation after haemorrhagic shock in animal models.
    Naumann DN; Dretzke J; Hutchings S; Midwinter MJ
    Syst Rev; 2015 Oct; 4():135. PubMed ID: 26437713
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Impact of high-dose norepinephrine during intra-hospital damage control resuscitation of traumatic haemorrhagic shock: A propensity-score analysis.
    Cardinale M; Cungi PJ; Esnault P; Nguyen C; Cotte J; Montcriol A; Prunet B; Bordes J; Renard A; Meaudre E
    Injury; 2020 May; 51(5):1164-1171. PubMed ID: 31791590
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The haemodynamic effects of bolus versus slower infusion of intravenous crystalloid in healthy volunteers.
    Ukor IF; Hilton AK; Bailey MJ; Bellomo R
    J Crit Care; 2017 Oct; 41():254-259. PubMed ID: 28599199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tracking DO2 with Compensatory Reserve During Whole Blood Resuscitation in Baboons.
    Koons NJ; Nguyen B; Suresh MR; Hinojosa-Laborde C; Convertino VA
    Shock; 2020 Mar; 53(3):327-334. PubMed ID: 32045396
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Factors affecting rapid fluid resuscitation with large-bore introducer catheters.
    Dutky PA; Stevens SL; Maull KI
    J Trauma; 1989 Jun; 29(6):856-60. PubMed ID: 2738983
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A computer model for analysis of fluid resuscitation.
    Barnea O; Sheffer N
    Comput Biol Med; 1993 Nov; 23(6):443-54. PubMed ID: 8306623
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The ideal target blood pressure for resuscitation during uncontrolled haemorrhagic shock.
    Liu S; Cao Y; Zeng Z
    Injury; 2014 Dec; 45(12):2110-1. PubMed ID: 24810667
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.