These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26974477)

  • 1. Hyperspectral imaging of plasmon resonances in metallic nanoparticles.
    Zopf D; Jatschka J; Dathe A; Jahr N; Fritzsche W; Stranik O
    Biosens Bioelectron; 2016 Jul; 81():287-293. PubMed ID: 26974477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-field optical tweezers for nanometrology of metallic nanoparticles.
    Pearce K; Wang F; Reece PJ
    Opt Express; 2011 Dec; 19(25):25559-69. PubMed ID: 22273949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.
    Chen KH; Hobley J; Foo YL; Su X
    Lab Chip; 2011 Jun; 11(11):1895-901. PubMed ID: 21359329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection.
    Lee SY; Walsh GF; Dal Negro L
    Opt Express; 2013 Feb; 21(4):4945-57. PubMed ID: 23482027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.
    Chamanzar M; Xia Z; Yegnanarayanan S; Adibi A
    Opt Express; 2013 Dec; 21(26):32086-98. PubMed ID: 24514803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry.
    Tseng TY; Lai PJ; Sung KB
    Opt Express; 2011 Jan; 19(2):1291-300. PubMed ID: 21263670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing.
    Gao Y; Gan Q; Xin Z; Cheng X; Bartoli FJ
    ACS Nano; 2011 Dec; 5(12):9836-44. PubMed ID: 22067195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single gold nanoparticle localized surface plasmon resonance spectral imaging for quantifying binding constant of carbohydrate-protein interaction.
    Liu X; Zhang Q; Tu Y; Zhao W; Gai H
    Anal Chem; 2013 Dec; 85(24):11851-7. PubMed ID: 24266418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflected light microspectroscopy for single-nanoparticle biosensing.
    Patskovsky S; Meunier M
    J Biomed Opt; 2015; 20(9):097001. PubMed ID: 26385656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction.
    Moirangthem RS; Chang YC; Hsu SH; Wei PK
    Biosens Bioelectron; 2010 Aug; 25(12):2633-8. PubMed ID: 20547051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical characterization of single plasmonic nanoparticles.
    Olson J; Dominguez-Medina S; Hoggard A; Wang LY; Chang WS; Link S
    Chem Soc Rev; 2015 Jan; 44(1):40-57. PubMed ID: 24979351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays.
    He J; Boegli M; Bruzas I; Lum W; Sagle L
    Anal Chem; 2015 Nov; 87(22):11407-14. PubMed ID: 26494412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.
    Quan Q; Floyd DL; Burgess IB; Deotare PB; Frank IW; Tang SK; Ilic R; Loncar M
    Opt Express; 2013 Dec; 21(26):32225-33. PubMed ID: 24514817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.