BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26974579)

  • 1. Wood degradation under UV irradiation: A lignin characterization.
    Cogulet A; Blanchet P; Landry V
    J Photochem Photobiol B; 2016 May; 158():184-91. PubMed ID: 26974579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yellowing and IR-changes of spruce wood as result of UV-irradiation.
    Müller U; Rätzsch M; Schwanninger M; Steiner M; Zöbl H
    J Photochem Photobiol B; 2003 Feb; 69(2):97-105. PubMed ID: 12633982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR and color change of the modified wood as a result of artificial light irradiation.
    Rosu D; Teaca CA; Bodirlau R; Rosu L
    J Photochem Photobiol B; 2010 Jun; 99(3):144-9. PubMed ID: 20392648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.
    Özgenç Ö; Durmaz S; Boyaci IH; Eksi-Kocak H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():395-400. PubMed ID: 27569772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV resistance and dimensional stability of wood modified with isopropenyl acetate.
    Nagarajappa GB; Pandey KK
    J Photochem Photobiol B; 2016 Feb; 155():20-7. PubMed ID: 26722999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on the artificial UV and natural ageing of beeswax and Chinese wax and influence of wax finishing on the ageing of Chinese Ash (Fraxinus mandshurica) wood surfaces.
    Liu XY; Timar MC; Varodi AM
    J Photochem Photobiol B; 2019 Dec; 201():111607. PubMed ID: 31710927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodegradation of thermally modified wood.
    Srinivas K; Pandey KK
    J Photochem Photobiol B; 2012 Dec; 117():140-5. PubMed ID: 23123593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.
    Agarwal UP; Reiner RR; Ralph SA
    J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the carbonyl groups in native lignin utilizing Fourier transform Raman spectroscopy.
    Kihara M; Takayama M; Wariishi H; Tanaka H
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Aug; 58(10):2213-21. PubMed ID: 12212746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [FTIR spectroscopic studies of the photo-discoloration of Chinese fir].
    Wang XQ; Fei BH; Ren HQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1272-5. PubMed ID: 19650469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy.
    Popescu CM; Popescu MC; Vasile C
    Int J Biol Macromol; 2011 May; 48(4):667-75. PubMed ID: 21349282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding in lignin: a Fourier transform infrared model compound study.
    Kubo S; Kadla JF
    Biomacromolecules; 2005; 6(5):2815-21. PubMed ID: 16153123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform Raman difference spectroscopy for detection of lignin oxidation products in thermomechanical pulp.
    Vester J; Felby C; Nielsen OF; Barsberg S
    Appl Spectrosc; 2004 Apr; 58(4):404-9. PubMed ID: 15104809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV stabilization of wood by nano metal oxides dispersed in propylene glycol.
    Nair S; Nagarajappa GB; Pandey KK
    J Photochem Photobiol B; 2018 Jun; 183():1-10. PubMed ID: 29679688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal Raman microscopy reveals changes in chemical composition of wood surfaces exposed to artificial weathering.
    Kanbayashi T; Kataoka Y; Ishikawa A; Matsunaga M; Kobayashi M; Kiguchi M
    J Photochem Photobiol B; 2018 Oct; 187():136-140. PubMed ID: 30145464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A photochemical method for improvement of color stability at polymer-wood biointerfaces.
    Palija T; Dobić J; Jaić M
    Colloids Surf B Biointerfaces; 2013 Aug; 108():152-7. PubMed ID: 23537833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of decayed wood by fungi with X-ray diffractometry and Fourier transform infrared spectroscopy].
    Lin J; Zhao GJ; Meng LX; Li ZP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1674-7. PubMed ID: 20707174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of FTIR spectroscopy to the characterization of archeological wood.
    Traoré M; Kaal J; Martínez Cortizas A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():63-70. PubMed ID: 26291671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage.
    Petrou M; Edwards HG; Janaway RC; Thompson GB; Wilson AS
    Anal Bioanal Chem; 2009 Dec; 395(7):2131-8. PubMed ID: 19834692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.