These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26974601)

  • 1. Dihydrogen Complexation.
    Crabtree RH
    Chem Rev; 2016 Aug; 116(15):8750-69. PubMed ID: 26974601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.
    Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step.
    Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V
    Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: dependence of the core geometry on electrocatalytic proton reduction.
    Cheah MH; Borg SJ; Best SP
    Inorg Chem; 2007 Mar; 46(5):1741-50. PubMed ID: 17256930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase.
    Ogata H; Nishikawa K; Lubitz W
    Nature; 2015 Apr; 520(7548):571-4. PubMed ID: 25624102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(kappa(2)-Ph2PCH2CH2PPh2)(mu-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation.
    Greco C; Fantucci P; De Gioia L; Suarez-Bertoa R; Bruschi M; Talarmin J; Schollhammer P
    Dalton Trans; 2010 Aug; 39(31):7320-9. PubMed ID: 20593098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic.
    Smith SE; Yang JY; DuBois DL; Bullock RM
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3152-5. PubMed ID: 22334352
    [No Abstract]   [Full Text] [Related]  

  • 13. Understanding and harnessing hydrogenases, biological dihydrogen catalysts.
    Parkin A
    Met Ions Life Sci; 2014; 14():99-124. PubMed ID: 25416392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research.
    Orio M; Pantazis DA
    Chem Commun (Camb); 2021 Apr; 57(33):3952-3974. PubMed ID: 33885698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
    Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR
    Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved vibrational spectroscopy of [FeFe]-hydrogenase model compounds.
    Bingaman JL; Kohnhorst CL; Van Meter GA; McElroy BA; Rakowski EA; Caplins BW; Gutowski TA; Stromberg CJ; Webster CE; Heilweil EJ
    J Phys Chem A; 2012 Jul; 116(27):7261-71. PubMed ID: 22612846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.
    Yuki M; Sakata K; Hirao Y; Nonoyama N; Nakajima K; Nishibayashi Y
    J Am Chem Soc; 2015 Apr; 137(12):4173-82. PubMed ID: 25756856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Ni(i)Fe(ii) analogue of the Ni-L state of the active site of the [NiFe] hydrogenases.
    Perotto CU; Marshall G; Jones GJ; Stephen Davies E; Lewis W; McMaster J; Schröder M
    Chem Commun (Camb); 2015 Dec; 51(95):16988-91. PubMed ID: 26447338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
    Wombwell C; Reisner E
    Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activation of H2 under mild conditions by an [FeFe]-hydrogenase model via an active μ-hydride species.
    Wang N; Wang M; Wang Y; Zheng D; Han H; Ahlquist MS; Sun L
    J Am Chem Soc; 2013 Sep; 135(37):13688-91. PubMed ID: 24001095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.