These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber. Raza M; Li X; Mao C; Liu F; He H; Wu W Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673114 [TBL] [Abstract][Full Text] [Related]
5. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure. Wen Y; Ma W; Bailey J; Matmon G; Yu X; Aeppli G Appl Opt; 2013 Jul; 52(19):4536-40. PubMed ID: 23842248 [TBL] [Abstract][Full Text] [Related]
8. Dual-band tunable perfect metamaterial absorber based on graphene. Wang F; Huang S; Li L; Chen W; Xie Z Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577 [TBL] [Abstract][Full Text] [Related]
9. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Zhang Y; Feng Y; Zhu B; Zhao J; Jiang T Opt Express; 2014 Sep; 22(19):22743-52. PubMed ID: 25321743 [TBL] [Abstract][Full Text] [Related]
10. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption. Zhang M; Song Z Opt Express; 2021 Jul; 29(14):21551-21561. PubMed ID: 34265940 [TBL] [Abstract][Full Text] [Related]
11. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene. Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736 [TBL] [Abstract][Full Text] [Related]
12. Tunable terahertz metamaterial absorber based on Dirac semimetal films. Wang T; Cao M; Zhang H; Zhang Y Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735 [TBL] [Abstract][Full Text] [Related]
13. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related]
14. Dual-band tunable perfect metamaterial absorber in the THz range. Yao G; Ling F; Yue J; Luo C; Ji J; Yao J Opt Express; 2016 Jan; 24(2):1518-27. PubMed ID: 26832531 [TBL] [Abstract][Full Text] [Related]
15. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Chen D; Yang J; Zhang J; Huang J; Zhang Z Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569 [TBL] [Abstract][Full Text] [Related]
16. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Bai J; Shen W; Shi J; Xu W; Zhang S; Chang S Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801056 [TBL] [Abstract][Full Text] [Related]
17. Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics. Soleymani A; Meymand RE; Granpayeh N Appl Opt; 2020 Mar; 59(9):2839-2848. PubMed ID: 32225833 [TBL] [Abstract][Full Text] [Related]
18. Graphene-supported tunable bidirectional terahertz metamaterials absorbers. Peng J; Leng J; Cao D; He X; Lin F; Liu F Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Duan G; Schalch J; Zhao X; Zhang J; Averitt RD; Zhang X Opt Express; 2018 Feb; 26(3):2242-2251. PubMed ID: 29401764 [TBL] [Abstract][Full Text] [Related]