These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 26974787)
1. Control of the Goos-Hänchen shifts of a probe light beam using phase tunability of the intracavity medium. Radmehr A; Sahrai M; Sattari H Appl Opt; 2016 Mar; 55(8):1946-52. PubMed ID: 26974787 [TBL] [Abstract][Full Text] [Related]
2. Tunneling-induced giant Goos-Hänchen shift in quantum wells. Yang WX; Liu S; Zhu Z; Ziauddin ; Lee RK Opt Lett; 2015 Jul; 40(13):3133-6. PubMed ID: 26125385 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of Goos-Hänchen shift due to a Rydberg state. Asadpour SH; Hamedi HR; Jafari M Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374 [TBL] [Abstract][Full Text] [Related]
4. Goos-Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures. Asadpour SH Appl Opt; 2017 Mar; 56(8):2201-2208. PubMed ID: 28375303 [TBL] [Abstract][Full Text] [Related]
5. Controlling Goos-Hänchen shifts due to the surface plasmon effect in a hybrid system. Solookinejad G; Jabbari M; Nafar M; Ahmadi E; Asadpour SH Appl Opt; 2018 Oct; 57(28):8193-8198. PubMed ID: 30461769 [TBL] [Abstract][Full Text] [Related]
6. Coherent control of spatial and angular Goos-Hänchen shifts with spontaneously generated coherence and incoherent pumping. Shui T; Chen XM; Yang WX Appl Opt; 2022 Dec; 61(34):10072-10079. PubMed ID: 36606766 [TBL] [Abstract][Full Text] [Related]
7. High sensitive label-free optical sensor based on Goos-Hänchen effect by the single chirped laser pulse. Benam ER; Sahrai M; Bonab JP Sci Rep; 2020 Oct; 10(1):17176. PubMed ID: 33057166 [TBL] [Abstract][Full Text] [Related]
8. Giant Goos-Hänchen shift in two different enantiomers' chiral molecules via quantum coherence. Nasehi R; Mahmoudi M Appl Opt; 2018 Sep; 57(27):7714-7721. PubMed ID: 30462033 [TBL] [Abstract][Full Text] [Related]
9. Giant and tunable Goos-Hänchen shift with a high reflectance induced by PT-symmetry in atomic vapor. Han P; Li W; Zhou Y; Jiang S; Chang X; Huang A; Zhang H; Xiao Z Opt Express; 2021 Sep; 29(19):30436-30448. PubMed ID: 34614773 [TBL] [Abstract][Full Text] [Related]
10. Goos-Hänchen-like shift of three-level matter wave incident on Raman beams. Duan Z; Hu L; Xu X; Liu C Opt Express; 2014 Jul; 22(15):17679-90. PubMed ID: 25089388 [TBL] [Abstract][Full Text] [Related]
11. Goos-Hänchen and Imbert-Fedorov shifts of a nondiffracting Bessel beam. Aiello A; Woerdman JP Opt Lett; 2011 Feb; 36(4):543-5. PubMed ID: 21326450 [TBL] [Abstract][Full Text] [Related]
12. Goos-Hänchen shifts of partially coherent light fields. Wang LG; Zhu SY; Zubairy MS Phys Rev Lett; 2013 Nov; 111(22):223901. PubMed ID: 24329448 [TBL] [Abstract][Full Text] [Related]
13. Goos-Hänchen and Imbert-Fedorov shifts at gradient metasurfaces. Kong Q; Shi HY; Shi JL; Chen X Opt Express; 2019 Apr; 27(9):11902-11913. PubMed ID: 31052739 [TBL] [Abstract][Full Text] [Related]
14. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium. Wan RG; Zubairy MS Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861 [TBL] [Abstract][Full Text] [Related]
15. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration. Broe J; Keller O J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360 [TBL] [Abstract][Full Text] [Related]
16. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab. Pichugin KN; Maksimov DN; Sadreev AF J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294 [TBL] [Abstract][Full Text] [Related]
18. Controllable large positive and negative Goos-Hänchen shifts with a double-Lambda atomic system. Othman A; Asiri S; Al-Amri M Sci Rep; 2023 Mar; 13(1):3789. PubMed ID: 36882437 [TBL] [Abstract][Full Text] [Related]
19. Weak measurement of magneto-optical Goos-Hänchen effect. Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications. Baida FI; Van Labeke D; Vigoureux JM Appl Opt; 1978 Mar; 17(5):858-66. PubMed ID: 20197882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]