BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26974795)

  • 1. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.
    Gómez-Correa JE; Coello V; Garza-Rivera A; Puente NP; Chávez-Cerda S
    Appl Opt; 2016 Mar; 55(8):2002-10. PubMed ID: 26974795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite modified Luneburg model of human eye lens.
    Gómez-Correa JE; Balderas-Mata SE; Pierscionek BK; Chávez-Cerda S
    Opt Lett; 2015 Sep; 40(17):3990-3. PubMed ID: 26368694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-invariant gradient refractive index lens: analytical ray tracing.
    Bahrami M; Goncharov AV
    J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry-invariant GRIN lens: finite ray tracing.
    Bahrami M; Goncharov AV
    Opt Express; 2014 Nov; 22(23):27797-810. PubMed ID: 25402023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye.
    Popiolek Masajada A
    Ophthalmic Physiol Opt; 1999 Jan; 19(1):41-9. PubMed ID: 10615438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aperiodic subwavelength Lüneburg lens with nonlinear Kerr effect compensation.
    Gao H; Takahashi S; Tian L; Barbastathis G
    Opt Express; 2011 Jan; 19(3):2257-65. PubMed ID: 21369043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-analytical ray tracing through the generalized Luneburg lens.
    Flores JR; Sochacki J; Sochacka M; Staroński R
    Appl Opt; 1992 Sep; 31(25):5167-70. PubMed ID: 20733688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided-wave optical thin-film Luneburg lenses: fabrication technique and properties.
    Yao SK; Anderson DB; August RR; Youmans BR; Oania CM
    Appl Opt; 1979 Dec; 18(24):4067-79. PubMed ID: 20216759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of intraocular lens calculation with ray tracing.
    Hoffmann P; Wahl J; Preussner PR
    J Refract Surg; 2012 Sep; 28(9):650-5. PubMed ID: 22947294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam propagation method analysis of optical waveguide lenses.
    Ishikawa A; Izutsu M; Sueta T
    Appl Opt; 1990 Dec; 29(34):5064-8. PubMed ID: 20577511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of thin-film photonic metamaterial Lüneburg lens using analytical approach.
    Gao H; Zhang B; Johnson SG; Barbastathis G
    Opt Express; 2012 Jan; 20(2):1617-28. PubMed ID: 22274504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical evaluation of the Luneburg integral and ray tracing.
    Beliakov G
    Appl Opt; 1996 Mar; 35(7):1011-4. PubMed ID: 21085206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discretization of two-dimensional Luneburg lens based on the correctional effective medium theory.
    Sun Z; Liu C; Xu R; Gong H; Xuan X; Liu R; Du M; Cao H
    Opt Express; 2021 Oct; 29(21):33434-33444. PubMed ID: 34809155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data.
    de Castro A; Barbero S; Ortiz S; Marcos S
    Opt Express; 2011 Sep; 19(20):19265-79. PubMed ID: 21996868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses.
    Acosta E; Bueno JM; Schwarz C; Artal P
    J Biomed Opt; 2010; 15(5):055001. PubMed ID: 21054083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High gain, wide-angle QCTO-enabled modified Luneburg lens antenna with broadband anti-reflective layer.
    Biswas S; Mirotznik M
    Sci Rep; 2020 Jul; 10(1):12646. PubMed ID: 32724073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interrelationship of lens anatomy and optical quality. I. Non-primate lenses.
    Sivak JG; Herbert KL; Peterson KL; Kuszak JR
    Exp Eye Res; 1994 Nov; 59(5):505-20. PubMed ID: 9492753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.