These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26974912)

  • 1. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media.
    Krasnikov I; Suhr C; Seteikin A; Roth B; Meinhardt-Wollweber M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Mar; 33(3):426-33. PubMed ID: 26974912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bright emission from a random Raman laser.
    Hokr BH; Bixler JN; Cone MT; Mason JD; Beier HT; Noojin GD; Petrov GI; Golovan LA; Thomas RJ; Rockwell BA; Yakovlev VV
    Nat Commun; 2014 Jul; 5():4356. PubMed ID: 25014073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples.
    Krasnikov I; Suhr C; Seteikin A; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):877-882. PubMed ID: 31045016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of Raman scattering including detector parameters and sampling volume.
    Krasnikov I; Seteikin A; Kniggendorf AK; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2138-2144. PubMed ID: 29240087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm.
    Chen C; Lu JQ; Ding H; Jacobs KM; Du Y; Hu XH
    Opt Express; 2006 Aug; 14(16):7420-35. PubMed ID: 19529109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and spatial resolution in transmission Raman spectroscopy.
    Everall N; Matousek P; MacLeod N; Ronayne KL; Clark IP
    Appl Spectrosc; 2010 Jan; 64(1):52-60. PubMed ID: 20132598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopic evaluation of human serum using metal plate and 785- and 1064-nm excitation lasers.
    Ito H; Uragami N; Miyazaki T; Yokoyama N; Inoue H
    PLoS One; 2019; 14(2):e0211986. PubMed ID: 30768643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy.
    Moran LJ; Wordingham F; Gardner B; Stone N; Harries TJ
    Analyst; 2021 Dec; 146(24):7601-7610. PubMed ID: 34783335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computationally efficient Monte-Carlo model for biomedical Raman spectroscopy.
    Dumont AP; Fang Q; Patil CA
    J Biophotonics; 2021 Jul; 14(7):e202000377. PubMed ID: 33733621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission resonance Raman spectroscopy: experimental results versus theoretical model calculations.
    Gonzálvez AG; González Ureña Á
    Appl Spectrosc; 2012 Oct; 66(10):1163-70. PubMed ID: 23031699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of Zeno switching through inverse Raman scattering in an optical fiber.
    Kieu K; Schneebeli L; Hales JM; Perry JW; Norwood RA; Peyghambarian N
    Opt Express; 2011 Jun; 19(13):12532-9. PubMed ID: 21716494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront shaping enhanced Raman scattering in a turbid medium.
    Thompson JV; Throckmorton GA; Hokr BH; Yakovlev VV
    Opt Lett; 2016 Apr; 41(8):1769-72. PubMed ID: 27082341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials.
    Matousek P; Conti C; Realini M; Colombo C
    Analyst; 2016 Feb; 141(3):731-9. PubMed ID: 26646435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of key modalities of micro-scale spatially offset Raman spectroscopy.
    Conti C; Realini M; Colombo C; Matousek P
    Analyst; 2015 Dec; 140(24):8127-33. PubMed ID: 26526114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.