BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26974960)

  • 1. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.
    Zhang Y; He J; Jia LJ; Yuan TL; Zhang D; Guo Y; Wang Y; Tang WH
    PLoS Pathog; 2016 Mar; 12(3):e1005485. PubMed ID: 26974960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of maize resistance to Fusarium graminearum.
    Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q
    BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize.
    Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T
    Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.
    Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F
    Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence.
    Yamamura Y; Shim WB
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1637-1645. PubMed ID: 18524918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by
    Sun J; Wang Y; Zhang X; Cheng Z; Song Y; Li H; Wang N; Liu S; Cao Z; Li H; Zheng W; Duan C; Cao Y
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Con7 is a key transcription regulator for conidiogenesis in the plant pathogenic fungus
    Shin S; Park J; Yang L; Kim H; Choi GJ; Lee Y-W; Kim J-E; Son H
    mSphere; 2024 May; 9(5):e0081823. PubMed ID: 38591889
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhang H; Yan H; Shim WB
    Microbiology (Reading); 2019 Oct; 165(10):1075-1085. PubMed ID: 31390325
    [No Abstract]   [Full Text] [Related]  

  • 9. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles.
    Zhang XW; Jia LJ; Zhang Y; Jiang G; Li X; Zhang D; Tang WH
    Plant Cell; 2012 Dec; 24(12):5159-76. PubMed ID: 23266949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides.
    Guo L; Wenner N; Kuldau GA
    Fungal Biol; 2015 Dec; 119(12):1158-1169. PubMed ID: 26615739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.
    Van Thuat N; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum.
    Wang G; Wang C; Hou R; Zhou X; Li G; Zhang S; Xu JR
    PLoS One; 2012; 7(5):e38324. PubMed ID: 22693618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.
    Zhang Y; Choi YE; Zou X; Xu JR
    Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum.
    Zheng Q; Hou R; Juanyu ; Zhang ; Ma J; Wu Z; Wang G; Wang C; Xu JR
    PLoS One; 2013; 8(6):e66980. PubMed ID: 23826182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum.
    Lou Y; Zhang J; Wang G; Fang W; Wang S; Abubakar YS; Zhou J; Wang Z; Zheng W
    mBio; 2021 Dec; 12(6):e0232421. PubMed ID: 34933449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum.
    Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts.
    Balcerzak M; Harris LJ; Subramaniam R; Ouellet T
    Fungal Biol; 2012 Apr; 116(4):478-88. PubMed ID: 22483046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance.
    Zuo N; Bai WZ; Wei WQ; Yuan TL; Zhang D; Wang YZ; Tang WH
    Cell Rep; 2022 Dec; 41(13):111877. PubMed ID: 36577386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize.
    Horevaj P; Bluhm BH
    Mol Plant Pathol; 2012 Jun; 13(5):431-44. PubMed ID: 22044756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum.
    Shim WB; Sagaram US; Choi YE; So J; Wilkinson HH; Lee YW
    Mol Plant Microbe Interact; 2006 Jul; 19(7):725-33. PubMed ID: 16838785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.