BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1739 related articles for article (PubMed ID: 26975021)

  • 1. Metabolic phenotype of bladder cancer.
    Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R
    Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis.
    Yang X; Cheng Y; Li P; Tao J; Deng X; Zhang X; Gu M; Lu Q; Yin C
    Tumour Biol; 2015 Jan; 36(1):383-91. PubMed ID: 25266796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism.
    Wan X; Liu Y; Zhao Y; Sun X; Fan D; Guo L
    PLoS One; 2017; 12(9):e0184213. PubMed ID: 28886081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines.
    Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M
    Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.
    Woo YM; Shin Y; Lee EJ; Lee S; Jeong SH; Kong HK; Park EY; Kim HK; Han J; Chang M; Park JH
    PLoS One; 2015; 10(7):e0132285. PubMed ID: 26158266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting glycogen metabolism in bladder cancer.
    Ritterson Lew C; Guin S; Theodorescu D
    Nat Rev Urol; 2015 Jul; 12(7):383-91. PubMed ID: 26032551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.
    Zhao W; Chang C; Cui Y; Zhao X; Yang J; Shen L; Zhou J; Hou Z; Zhang Z; Ye C; Hasenmayer D; Perkins R; Huang X; Yao X; Yu L; Huang R; Zhang D; Guo H; Yan J
    J Biol Chem; 2014 Apr; 289(16):11219-11229. PubMed ID: 24584933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells.
    Straus DS
    Mol Cancer; 2013 Jul; 12():78. PubMed ID: 23866118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1α activation.
    Jung KH; Lee JH; Thien Quach CH; Paik JY; Oh H; Park JW; Lee EJ; Moon SH; Lee KH
    J Nucl Med; 2013 Dec; 54(12):2161-7. PubMed ID: 24221993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2.
    Lee KM; Nam K; Oh S; Lim J; Lee T; Shin I
    Cell Signal; 2015 Feb; 27(2):228-35. PubMed ID: 25446258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes.
    Kihira Y; Yamano N; Izawa-Ishizawa Y; Ishizawa K; Ikeda Y; Tsuchiya K; Tamaki T; Tomita S
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1602-11. PubMed ID: 21810481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer.
    Gao T; Zhang X; Zhao J; Zhou F; Wang Y; Zhao Z; Xing J; Chen B; Li J; Liu S
    Cancer Lett; 2020 Jan; 469():89-101. PubMed ID: 31639424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism.
    Conde VR; Oliveira PF; Nunes AR; Rocha CS; Ramalhosa E; Pereira JA; Alves MG; Silva BM
    Exp Cell Res; 2015 Jul; 335(1):91-8. PubMed ID: 25907297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells.
    Duan F; Mei C; Yang L; Zheng J; Lu H; Xia Y; Hsu S; Liang H; Hong L
    Sci Rep; 2020 May; 10(1):7714. PubMed ID: 32382009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII.
    Zhao X; Lu C; Chu W; Zhang B; Zhen Q; Wang R; Zhang Y; Li Z; Lv B; Li H; Liu J
    Tumour Biol; 2017 May; 39(5):1010428317706215. PubMed ID: 28488541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis.
    Parajuli P; Tiwari RV; Sylvester PW
    Biol Pharm Bull; 2015; 38(9):1352-60. PubMed ID: 26328490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake.
    Chen J; Cao L; Li Z; Li Y
    Hum Cell; 2019 Apr; 32(2):193-201. PubMed ID: 30868406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells.
    Min JW; Kim KI; Kim HA; Kim EK; Noh WC; Jeon HB; Cho DH; Oh JS; Park IC; Hwang SG; Kim JS
    Biochem Biophys Res Commun; 2013 Oct; 440(1):137-42. PubMed ID: 24051093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRP78 is implicated in the modulation of tumor aerobic glycolysis by promoting autophagic degradation of IKKβ.
    Li Z; Wang Y; Newton IP; Zhang L; Ji P; Li Z
    Cell Signal; 2015 Jun; 27(6):1237-45. PubMed ID: 25748049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 87.