These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1839 related articles for article (PubMed ID: 26975021)
1. Metabolic phenotype of bladder cancer. Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021 [TBL] [Abstract][Full Text] [Related]
2. A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Yang X; Cheng Y; Li P; Tao J; Deng X; Zhang X; Gu M; Lu Q; Yin C Tumour Biol; 2015 Jan; 36(1):383-91. PubMed ID: 25266796 [TBL] [Abstract][Full Text] [Related]
3. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism. Wan X; Liu Y; Zhao Y; Sun X; Fan D; Guo L PLoS One; 2017; 12(9):e0184213. PubMed ID: 28886081 [TBL] [Abstract][Full Text] [Related]
4. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines. Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416 [TBL] [Abstract][Full Text] [Related]
5. Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Nam K; Oh S; Shin I Biochem J; 2016 Oct; 473(19):3013-30. PubMed ID: 27458252 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells. Woo YM; Shin Y; Lee EJ; Lee S; Jeong SH; Kong HK; Park EY; Kim HK; Han J; Chang M; Park JH PLoS One; 2015; 10(7):e0132285. PubMed ID: 26158266 [TBL] [Abstract][Full Text] [Related]
8. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α. Zhao W; Chang C; Cui Y; Zhao X; Yang J; Shen L; Zhou J; Hou Z; Zhang Z; Ye C; Hasenmayer D; Perkins R; Huang X; Yao X; Yu L; Huang R; Zhang D; Guo H; Yan J J Biol Chem; 2014 Apr; 289(16):11219-11229. PubMed ID: 24584933 [TBL] [Abstract][Full Text] [Related]
9. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Straus DS Mol Cancer; 2013 Jul; 12():78. PubMed ID: 23866118 [TBL] [Abstract][Full Text] [Related]
10. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Liu Y; Zhao Y; Guo L Mol Cell Endocrinol; 2016 Jan; 420():208-16. PubMed ID: 26549689 [TBL] [Abstract][Full Text] [Related]
11. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1α activation. Jung KH; Lee JH; Thien Quach CH; Paik JY; Oh H; Park JW; Lee EJ; Moon SH; Lee KH J Nucl Med; 2013 Dec; 54(12):2161-7. PubMed ID: 24221993 [TBL] [Abstract][Full Text] [Related]
12. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Lee KM; Nam K; Oh S; Lim J; Lee T; Shin I Cell Signal; 2015 Feb; 27(2):228-35. PubMed ID: 25446258 [TBL] [Abstract][Full Text] [Related]
13. Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes. Kihira Y; Yamano N; Izawa-Ishizawa Y; Ishizawa K; Ikeda Y; Tsuchiya K; Tamaki T; Tomita S Int J Biochem Cell Biol; 2011 Nov; 43(11):1602-11. PubMed ID: 21810481 [TBL] [Abstract][Full Text] [Related]
14. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Gao T; Zhang X; Zhao J; Zhou F; Wang Y; Zhao Z; Xing J; Chen B; Li J; Liu S Cancer Lett; 2020 Jan; 469():89-101. PubMed ID: 31639424 [TBL] [Abstract][Full Text] [Related]
15. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism. Conde VR; Oliveira PF; Nunes AR; Rocha CS; Ramalhosa E; Pereira JA; Alves MG; Silva BM Exp Cell Res; 2015 Jul; 335(1):91-8. PubMed ID: 25907297 [TBL] [Abstract][Full Text] [Related]
16. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Duan F; Mei C; Yang L; Zheng J; Lu H; Xia Y; Hsu S; Liang H; Hong L Sci Rep; 2020 May; 10(1):7714. PubMed ID: 32382009 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Zhao X; Lu C; Chu W; Zhang B; Zhen Q; Wang R; Zhang Y; Li Z; Lv B; Li H; Liu J Tumour Biol; 2017 May; 39(5):1010428317706215. PubMed ID: 28488541 [TBL] [Abstract][Full Text] [Related]
18. Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis. Parajuli P; Tiwari RV; Sylvester PW Biol Pharm Bull; 2015; 38(9):1352-60. PubMed ID: 26328490 [TBL] [Abstract][Full Text] [Related]
19. SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Chen J; Cao L; Li Z; Li Y Hum Cell; 2019 Apr; 32(2):193-201. PubMed ID: 30868406 [TBL] [Abstract][Full Text] [Related]
20. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells. Min JW; Kim KI; Kim HA; Kim EK; Noh WC; Jeon HB; Cho DH; Oh JS; Park IC; Hwang SG; Kim JS Biochem Biophys Res Commun; 2013 Oct; 440(1):137-42. PubMed ID: 24051093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]