These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 26975195)

  • 41. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis.
    D'Elia MA; Millar KE; Bhavsar AP; Tomljenovic AM; Hutter B; Schaab C; Moreno-Hagelsieb G; Brown ED
    Chem Biol; 2009 May; 16(5):548-56. PubMed ID: 19477419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis.
    Shockman GD; Daneo-Moore L; Kariyama R; Massidda O
    Microb Drug Resist; 1996; 2(1):95-8. PubMed ID: 9158729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NDP-rhamnose biosynthesis and rhamnosyltransferases: building diverse glycoconjugates in nature.
    Wagstaff BA; Zorzoli A; Dorfmueller HC
    Biochem J; 2021 Feb; 478(4):685-701. PubMed ID: 33599745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria.
    Laflamme N; Echchannaoui H; Landmann R; Rivest S
    Eur J Immunol; 2003 Apr; 33(4):1127-38. PubMed ID: 12672079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial Cell Mechanics.
    Auer GK; Weibel DB
    Biochemistry; 2017 Jul; 56(29):3710-3724. PubMed ID: 28666084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. STRUCTURE OF STREPTOCOCCAL CELL WALLS. II. GROUP A BIOSE AND GROUP A TRIOSE FROM C-POLYSACCHARIDE.
    HEYMANN H; MANNIELLO JM; ZELEZNICK LD; BARKULIS SS
    J Biol Chem; 1964 May; 239():1656-63. PubMed ID: 14189905
    [No Abstract]   [Full Text] [Related]  

  • 47. Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure.
    Desvaux M; Dumas E; Chafsey I; Hébraud M
    FEMS Microbiol Lett; 2006 Mar; 256(1):1-15. PubMed ID: 16487313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of gram-positive bacteria: comparison with biochemical analysis.
    Dufrêne YF; van der Wal A; Norde W; Rouxhet PG
    J Bacteriol; 1997 Feb; 179(4):1023-8. PubMed ID: 9023179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus.
    Winstel V; Xia G; Peschel A
    Int J Med Microbiol; 2014 May; 304(3-4):215-21. PubMed ID: 24365646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Type and group polysaccharides of group D streptococci.
    ELLIOTT SD
    J Exp Med; 1960 May; 111(5):621-30. PubMed ID: 13726456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gram-positive cell wall structure of the A3 gamma type in heliobacteria.
    Pickett MW; Weiss N; Kelly DJ
    FEMS Microbiol Lett; 1994 Sep; 122(1-2):7-12. PubMed ID: 7958780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial invasins: molecular systems dedicated to the invasion of host tissues.
    Cambronne ED; Schneewind O
    Contrib Microbiol; 2005; 12():181-209. PubMed ID: 15496781
    [No Abstract]   [Full Text] [Related]  

  • 53. Chemical structures of the secondary cell wall polymers (SCWPs) isolated from bovine mastitis Streptococcus uberis.
    Czabańska A; Holst O; Duda KA
    Carbohydr Res; 2013 Aug; 377():58-62. PubMed ID: 23810981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of chlorpromazine binding by gram-positive and gram-negative bacteria.
    Molnár J; Fischer J; Nakamura MJ
    Antonie Van Leeuwenhoek; 1992 Nov; 62(4):309-14. PubMed ID: 1285648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Architecture of peptidoglycan: more data and more models.
    Vollmer W; Seligman SJ
    Trends Microbiol; 2010 Feb; 18(2):59-66. PubMed ID: 20060721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria.
    Marraffini LA; Dedent AC; Schneewind O
    Microbiol Mol Biol Rev; 2006 Mar; 70(1):192-221. PubMed ID: 16524923
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans.
    Shibata Y; Yamashita Y; van der Ploeg JR
    FEMS Microbiol Lett; 2009 May; 294(1):68-73. PubMed ID: 19493010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions.
    Kern T; Giffard M; Hediger S; Amoroso A; Giustini C; Bui NK; Joris B; Bougault C; Vollmer W; Simorre JP
    J Am Chem Soc; 2010 Aug; 132(31):10911-9. PubMed ID: 20681725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.
    Münch D; Sahl HG
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3062-71. PubMed ID: 25934055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria.
    Pagliero E; Dideberg O; Vernet T; Di Guilmi AM
    BMC Genomics; 2005 Feb; 6():19. PubMed ID: 15717932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.