These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 26975223)
1. From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation. Ashourirad B; Arab P; Verlander A; El-Kaderi HM ACS Appl Mater Interfaces; 2016 Apr; 8(13):8491-501. PubMed ID: 26975223 [TBL] [Abstract][Full Text] [Related]
2. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436 [TBL] [Abstract][Full Text] [Related]
3. Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO₂ and CH₄. Wang J; Krishna R; Wu X; Sun Y; Deng S Langmuir; 2015 Sep; 31(36):9845-52. PubMed ID: 26258871 [TBL] [Abstract][Full Text] [Related]
4. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. Wang J; Senkovska I; Oschatz M; Lohe MR; Borchardt L; Heerwig A; Liu Q; Kaskel S ACS Appl Mater Interfaces; 2013 Apr; 5(8):3160-7. PubMed ID: 23530455 [TBL] [Abstract][Full Text] [Related]
5. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures. Gu S; He J; Zhu Y; Wang Z; Chen D; Yu G; Pan C; Guan J; Tao K ACS Appl Mater Interfaces; 2016 Jul; 8(28):18383-92. PubMed ID: 27332739 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. Sevilla M; Parra JB; Fuertes AB ACS Appl Mater Interfaces; 2013 Jul; 5(13):6360-8. PubMed ID: 23789916 [TBL] [Abstract][Full Text] [Related]
7. One-Pot Synthesis of Melamine Formaldehyde Resin-Derived Yu Q; Bai J; Huang J; Demir M; Farghaly AA; Aghamohammadi P; Hu X; Wang L Molecules; 2023 Feb; 28(4):. PubMed ID: 36838757 [TBL] [Abstract][Full Text] [Related]
8. One-Pot Synthesis of Rubber Seed Shell-Derived N-Doped Ultramicroporous Carbons for Efficient CO Zhang X; Rong M; Cao H; Tan T Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683742 [TBL] [Abstract][Full Text] [Related]
9. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture. Wan L; Wang J; Feng C; Sun Y; Li K Nanoscale; 2015 Apr; 7(15):6534-44. PubMed ID: 25790196 [TBL] [Abstract][Full Text] [Related]
11. CO Shao L; Liu M; Huang J; Liu YN J Colloid Interface Sci; 2018 Mar; 513():304-313. PubMed ID: 29156238 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO Ma C; Bai J; Hu X; Jiang Z; Wang L J Environ Sci (China); 2023 Mar; 125():533-543. PubMed ID: 36375936 [TBL] [Abstract][Full Text] [Related]
13. One-Step Synthesis of Sulfur-Doped Nanoporous Carbons from Lignin with Ultra-High Surface Area, Sulfur Content and CO Saha D; Orkoulas G; Bates D Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614794 [TBL] [Abstract][Full Text] [Related]
14. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. Saleh M; Lee HM; Kemp KC; Kim KS ACS Appl Mater Interfaces; 2014 May; 6(10):7325-33. PubMed ID: 24793559 [TBL] [Abstract][Full Text] [Related]
15. Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Yang M; Guo L; Hu G; Hu X; Xu L; Chen J; Dai W; Fan M Environ Sci Technol; 2015 Jun; 49(11):7063-70. PubMed ID: 25961379 [TBL] [Abstract][Full Text] [Related]
16. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. Cai J; Qi J; Yang C; Zhao X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3703-11. PubMed ID: 24548215 [TBL] [Abstract][Full Text] [Related]
17. Direct Carbonization of Cyanopyridinium Crystalline Dicationic Salts into Nitrogen-Enriched Ultra-Microporous Carbons toward Excellent CO2 Adsorption. Chen G; Wang X; Li J; Hou W; Zhou Y; Wang J ACS Appl Mater Interfaces; 2015 Aug; 7(33):18508-18. PubMed ID: 26234297 [TBL] [Abstract][Full Text] [Related]
18. Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO Zhang S; Zhou Q; Jiang X; Yao L; Jiang W; Xie R Environ Technol; 2020 Nov; 41(27):3544-3553. PubMed ID: 31072233 [TBL] [Abstract][Full Text] [Related]
19. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation. Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860 [TBL] [Abstract][Full Text] [Related]
20. Influence of porous texture and surface chemistry on the CO₂ adsorption capacity of porous carbons: acidic and basic site interactions. Sánchez-Sánchez A; Suárez-García F; Martínez-Alonso A; Tascón JM ACS Appl Mater Interfaces; 2014 Dec; 6(23):21237-47. PubMed ID: 25347795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]