These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26975337)

  • 1. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Wavelength Plasmonic Flash Light Welding of Silver Nanowires for Transparent Electrodes with High Conductivity.
    Jang YR; Chung WH; Hwang YT; Hwang HJ; Kim SH; Kim HS
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24099-24107. PubMed ID: 29940106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.
    Hwang HJ; Oh KH; Kim HS
    Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.
    Öhlund T; Schuppert AK; Hummelgård M; Bäckström J; Nilsson HE; Olin H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18273-82. PubMed ID: 26245645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.
    Chung WH; Hwang YT; Lee SH; Kim HS
    Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-pulsed white light sintering of printed Cu nanoinks.
    Han WS; Hong JM; Kim HS; Song YW
    Nanotechnology; 2011 Sep; 22(39):395705. PubMed ID: 21896978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Plasmonic Optical/Thermal Barrier: Flashlight-Sintered Copper Electrodes Compatible with Polyethylene Terephthalate Plastic Substrates.
    Park HJ; Cho MK; Jeong YW; Kim D; Lee SY; Choi Y; Jeong S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43814-43821. PubMed ID: 29182241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate.
    Wu X; Shao S; Chen Z; Cui Z
    Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.