These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26975462)
1. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents. Insanally M; Trumpis M; Wang C; Chiang CH; Woods V; Palopoli-Trojani K; Bossi S; Froemke RC; Viventi J J Neural Eng; 2016 Apr; 13(2):026030-26030. PubMed ID: 26975462 [TBL] [Abstract][Full Text] [Related]
2. A low-cost, multiplexed electrophysiology system for chronic μECoG recordings in rodents. Wang J; Trumpis M; Insanally M; Froemke R; Viventi J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5256-9. PubMed ID: 25571179 [TBL] [Abstract][Full Text] [Related]
3. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG. Trumpis M; Insanally M; Zou J; Elsharif A; Ghomashchi A; Sertac Artan N; Froemke RC; Viventi J J Neural Eng; 2017 Apr; 14(2):026009. PubMed ID: 28102827 [TBL] [Abstract][Full Text] [Related]
4. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. Escabí MA; Read HL; Viventi J; Kim DH; Higgins NC; Storace DA; Liu AS; Gifford AM; Burke JF; Campisi M; Kim YS; Avrin AE; Spiegel Jan Vd; Huang Y; Li M; Wu J; Rogers JA; Litt B; Cohen YE J Neurophysiol; 2014 Sep; 112(6):1566-83. PubMed ID: 24920021 [TBL] [Abstract][Full Text] [Related]
5. Recording of single-unit activities with flexible micro-electrocorticographic array in rats for decoding of whole-body navigation. Lo YT; Jiang L; Woodington B; Middya S; Braendlein M; Lam JLW; Lim MJR; Ng VYP; Rao JP; Chan DWS; Ang BT J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 38986465 [No Abstract] [Full Text] [Related]
6. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice. Setogawa S; Kanda R; Tada S; Hikima T; Saitoh Y; Ishikawa M; Nakada S; Seki F; Hikishima K; Matsumoto H; Mizuseki K; Fukayama O; Osanai M; Sekiguchi H; Ohkawa N Mol Brain; 2023 May; 16(1):38. PubMed ID: 37138338 [TBL] [Abstract][Full Text] [Related]
7. A modular high-density μECoG system on macaque vlPFC for auditory cognitive decoding. Chiang CH; Lee J; Wang C; Williams AJ; Lucas TH; Cohen YE; Viventi J J Neural Eng; 2020 Jul; 17(4):046008. PubMed ID: 32498058 [TBL] [Abstract][Full Text] [Related]
8. In vitro assessment of long-term reliability of low-cost μECoG arrays. Palopoli-Trojani K; Woods V; Chia-Han Chiang ; Trumpis M; Viventi J Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4503-4506. PubMed ID: 28269278 [TBL] [Abstract][Full Text] [Related]
9. Estimating cortical column sensory networks in rodents from micro-electrocorticograph (μECoG) recordings. Pizarro R; Richner T; Brodnick S; Thongpang S; Williams J; Van Veen B Neuroimage; 2017 Dec; 163():342-357. PubMed ID: 28951350 [TBL] [Abstract][Full Text] [Related]
10. Assessment of neurovascular dynamics during transient ischemic attack by the novel integration of micro-electrocorticography electrode array with functional photoacoustic microscopy. Liu YH; Liao LD; Tan SSH; Kwon KY; Ling JM; Bandla A; Shih YI; Tan ETW; Li W; Ng WH; Lai HY; Chen YY; Thakor NV Neurobiol Dis; 2015 Oct; 82():455-465. PubMed ID: 26149348 [TBL] [Abstract][Full Text] [Related]
11. Quantitative simulation of extracellular single unit recording from the surface of cortex. Hill M; Rios E; Sudhakar SK; Roossien DH; Caldwell C; Cai D; Ahmed OJ; Lempka SF; Chestek CA J Neural Eng; 2018 Oct; 15(5):056007. PubMed ID: 29923502 [TBL] [Abstract][Full Text] [Related]
12. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. Kwon KY; Sirowatka B; Weber A; Li W IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668 [TBL] [Abstract][Full Text] [Related]
13. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Akamine IR; Garich JV; Gulick DW; Hara SA; Benscoter MA; Kuehn ST; Worrell GA; Raupp GB; Blain Christen JM Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38744259 [No Abstract] [Full Text] [Related]
14. μECoG Recordings Through a Thinned Skull. Brodnick SK; Ness JP; Richner TJ; Thongpang S; Novello J; Hayat M; Cheng KP; Krugner-Higby L; Suminski AJ; Ludwig KA; Williams JC Front Neurosci; 2019; 13():1017. PubMed ID: 31632232 [TBL] [Abstract][Full Text] [Related]
15. A wireless transmission neural interface system for unconstrained non-human primates. Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496 [TBL] [Abstract][Full Text] [Related]
16. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
17. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Ledochowitsch P; Yazdan-Shahmorad A; Bouchard KE; Diaz-Botia C; Hanson TL; He JW; Seybold BA; Olivero E; Phillips EA; Blanche TJ; Schreiner CE; Hasenstaub A; Chang EF; Sabes PN; Maharbiz MM J Neurosci Methods; 2015 Dec; 256():220-31. PubMed ID: 26296286 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach. Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285 [TBL] [Abstract][Full Text] [Related]
19. A Novel µECoG Electrode Interface for Comparison of Local and Common Averaged Referenced Signals. Williams AJ; Trumpis M; Bent B; Chiang CH; Viventi J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5057-5060. PubMed ID: 30441477 [TBL] [Abstract][Full Text] [Related]