These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26975565)

  • 1. Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models.
    Nakamura H; Asai Y
    Phys Chem Chem Phys; 2016 Apr; 18(13):8820-6. PubMed ID: 26975565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of conducting filament and non-filament regions in the Ta
    Park TH; Kim HJ; Park WY; Kim SG; Choi BJ; Hwang CS
    Nanoscale; 2017 May; 9(18):6010-6019. PubMed ID: 28443901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices.
    Dirkmann S; Kaiser J; Wenger C; Mussenbrock T
    ACS Appl Mater Interfaces; 2018 May; 10(17):14857-14868. PubMed ID: 29601180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive switching and electrical control of ferromagnetism in a Ag/HfO₂/Nb:SrTiO₃/Ag resistive random access memory (RRAM) device at room temperature.
    Ren S; Zhu G; Xie J; Bu J; Qin H; Hu J
    J Phys Condens Matter; 2016 Feb; 28(5):056001. PubMed ID: 26761365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures.
    Calka P; Martinez E; Delaye V; Lafond D; Audoit G; Mariolle D; Chevalier N; Grampeix H; Cagli C; Jousseaume V; Guedj C
    Nanotechnology; 2013 Mar; 24(8):085706. PubMed ID: 23386039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The current limit and self-rectification functionalities in the TiO
    Yoon JH; Kwon DE; Kim Y; Kwon YJ; Yoon KJ; Park TH; Shao XL; Hwang CS
    Nanoscale; 2017 Aug; 9(33):11920-11928. PubMed ID: 28786468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of a Ta oxygen scavenger layer on HfO2-based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport.
    Zhong X; Rungger I; Zapol P; Nakamura H; Asai Y; Heinonen O
    Phys Chem Chem Phys; 2016 Mar; 18(10):7502-10. PubMed ID: 26902598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO
    Xu YD; Jiang YP; Tang XG; Liu QX; Tang Z; Li WH; Guo XB; Zhou YC
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism underlying silicon oxide based resistive random-access memory (ReRAM).
    Chen YL; Ho MS; Lee WJ; Chung PF; Balraj B; Sivakumar C
    Nanotechnology; 2020 Apr; 31(14):145709. PubMed ID: 31846950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annealing Effect of Al2O3 Tunnel Barriers in HfO2-Based ReRAM Devices on Nonlinear Resistive Switching Characteristics.
    Park S; Cho K; Jung J; Kim S
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7569-72. PubMed ID: 26726373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent resistive switching memory using aluminum oxide on a flexible substrate.
    Yeom SW; Shin SC; Kim TY; Ha HJ; Lee YH; Shim JW; Ju BK
    Nanotechnology; 2016 Feb; 27(7):07LT01. PubMed ID: 26763473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of oxygen exchange reaction at the ohmic interface in Ta
    Kim W; Menzel S; Wouters DJ; Guo Y; Robertson J; Roesgen B; Waser R; Rana V
    Nanoscale; 2016 Oct; 8(41):17774-17781. PubMed ID: 27523172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories.
    Chen S; Valov I
    Adv Mater; 2022 Jan; 34(3):e2105022. PubMed ID: 34695257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
    Cho DY; Luebben M; Wiefels S; Lee KS; Valov I
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19287-19295. PubMed ID: 28508634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Power, High-Performance, Non-volatile Inkjet-Printed HfO
    Vescio G; Martín G; Crespo-Yepes A; Claramunt S; Alonso D; López-Vidrier J; Estradé S; Porti M; Rodríguez R; Peiró F; Cornet A; Cirera A; Nafría M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23659-23666. PubMed ID: 31180626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Resistive Switching by Using an Optimized MoS
    Qiu JT; Samanta S; Dutta M; Ginnaram S; Maikap S
    Langmuir; 2019 Mar; 35(11):3897-3906. PubMed ID: 30791683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures.
    Yildirim H; Pachter R
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9802-9816. PubMed ID: 29488379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forming-less and Non-Volatile Resistive Switching in WO
    Won S; Lee SY; Park J; Seo H
    Sci Rep; 2017 Aug; 7(1):10186. PubMed ID: 28860572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Power Resistive Switching Characteristic in HfO
    Ding X; Feng Y; Huang P; Liu L; Kang J
    Nanoscale Res Lett; 2019 May; 14(1):157. PubMed ID: 31073774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Ligands Affect Resistive Switching in Solution-Processed HfO
    Wang J; Choudhary S; De Roo J; De Keukeleere K; Van Driessche I; Crosby AJ; Nonnenmann SS
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4824-4830. PubMed ID: 29338165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.