These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26975654)

  • 1. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets.
    Cass AA; Bahn JH; Lee JH; Greer C; Lin X; Kim Y; Hsiao YH; Xiao X
    Nucleic Acids Res; 2016 Apr; 44(7):3253-63. PubMed ID: 26975654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage.
    Bracken CP; Szubert JM; Mercer TR; Dinger ME; Thomson DW; Mattick JS; Michael MZ; Goodall GJ
    Nucleic Acids Res; 2011 Jul; 39(13):5658-68. PubMed ID: 21427086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sRNA-dependent control of curli biosynthesis in Escherichia coli: McaS directs endonucleolytic cleavage of csgD mRNA.
    Andreassen PR; Pettersen JS; Szczerba M; Valentin-Hansen P; Møller-Jensen J; Jørgensen MG
    Nucleic Acids Res; 2018 Jul; 46(13):6746-6760. PubMed ID: 29905843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. StarScan: a web server for scanning small RNA targets from degradome sequencing data.
    Liu S; Li JH; Wu J; Zhou KR; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2015 Jul; 43(W1):W480-6. PubMed ID: 25990732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.
    Karginov FV; Cheloufi S; Chong MM; Stark A; Smith AD; Hannon GJ
    Mol Cell; 2010 Jun; 38(6):781-8. PubMed ID: 20620951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery.
    Donovan J; Rath S; Kolet-Mandrikov D; Korennykh A
    RNA; 2017 Nov; 23(11):1660-1671. PubMed ID: 28808124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes.
    Watanabe T; Takeda A; Tsukiyama T; Mise K; Okuno T; Sasaki H; Minami N; Imai H
    Genes Dev; 2006 Jul; 20(13):1732-43. PubMed ID: 16766679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small RNAs derived from longer non-coding RNAs.
    Röther S; Meister G
    Biochimie; 2011 Nov; 93(11):1905-15. PubMed ID: 21843590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline.
    Watanabe T; Cheng EC; Zhong M; Lin H
    Genome Res; 2015 Mar; 25(3):368-80. PubMed ID: 25480952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells.
    Ohms S; Rangasamy D
    Oncotarget; 2014 Jun; 5(12):4103-17. PubMed ID: 24980824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity.
    Jung E; Seong Y; Jeon B; Song H; Kwon YS
    Biochim Biophys Acta Gene Regul Mech; 2017 Nov; 1860(11):1148-1158. PubMed ID: 29031931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA-derived small RNAs: New players in genome protection against retrotransposons.
    Martinez G
    RNA Biol; 2018 Feb; 15(2):170-175. PubMed ID: 29120263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs.
    Martínez de Alba AE; Moreno AB; Gabriel M; Mallory AC; Christ A; Bounon R; Balzergue S; Aubourg S; Gautheret D; Crespi MD; Vaucheret H; Maizel A
    Nucleic Acids Res; 2015 Mar; 43(5):2902-13. PubMed ID: 25694514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrotransposons and non-protein coding RNAs.
    Mourier T; Willerslev E
    Brief Funct Genomic Proteomic; 2009 Nov; 8(6):493-501. PubMed ID: 19729447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes.
    Brown BD; Harland RM
    Genes Dev; 1990 Nov; 4(11):1925-35. PubMed ID: 1980477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.
    Babiarz JE; Ruby JG; Wang Y; Bartel DP; Blelloch R
    Genes Dev; 2008 Oct; 22(20):2773-85. PubMed ID: 18923076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing.
    Chen M; Bao H; Wu Q; Wang Y
    Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica.
    Ruiz-Ferrer V; Cabrera J; Martinez-Argudo I; Artaza H; Fenoll C; Escobar C
    Mol Plant Pathol; 2018 Nov; 19(11):2431-2445. PubMed ID: 30011119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.
    Watanabe T; Totoki Y; Toyoda A; Kaneda M; Kuramochi-Miyagawa S; Obata Y; Chiba H; Kohara Y; Kono T; Nakano T; Surani MA; Sakaki Y; Sasaki H
    Nature; 2008 May; 453(7194):539-43. PubMed ID: 18404146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of mRNA internal cleavage sites in Arabidopsis thaliana.
    Ueno D; Yamasaki S; Demura T; Kato K
    J Biosci Bioeng; 2018 Jun; 125(6):723-728. PubMed ID: 29358038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.