BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26975844)

  • 1. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan.
    Alkhateeb RS; Vorhölter FJ; Rückert C; Mentz A; Wibberg D; Hublik G; Niehaus K; Pühler A
    J Biotechnol; 2016 May; 225():18-28. PubMed ID: 26975844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
    Alkhateeb RS; Vorhölter FJ; Steffens T; Rückert C; Ortseifen V; Hublik G; Niehaus K; Pühler A
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6613-6625. PubMed ID: 29858955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
    Alkhateeb RS; Rückert C; Rupp O; Pucker B; Hublik G; Wibberg D; Niehaus K; Pühler A; Vorhölter FJ
    J Biotechnol; 2017 Jul; 253():55-61. PubMed ID: 28506932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
    Vorhölter FJ; Schneiker S; Goesmann A; Krause L; Bekel T; Kaiser O; Linke B; Patschkowski T; Rückert C; Schmid J; Sidhu VK; Sieber V; Tauch A; Watt SA; Weisshaar B; Becker A; Niehaus K; Pühler A
    J Biotechnol; 2008 Mar; 134(1-2):33-45. PubMed ID: 18304669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two non-consensus Clp binding sites are involved in upregulation of the gum operon involved in xanthan polysaccharide synthesis in Xanthomonas campestris pv. campestris.
    Chen CH; Lin NT; Hsiao YM; Yang CY; Tseng YH
    Res Microbiol; 2010 Sep; 161(7):583-9. PubMed ID: 20558281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide.
    Katzen F; Becker A; Zorreguieta A; Pühler A; Ielpi L
    J Bacteriol; 1996 Jul; 178(14):4313-8. PubMed ID: 8763965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100.
    Steffens T; Vorhölter FJ; Giampà M; Hublik G; Pühler A; Niehaus K
    BMC Microbiol; 2016 May; 16():93. PubMed ID: 27215401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.
    Schatschneider S; Persicke M; Watt SA; Hublik G; Pühler A; Niehaus K; Vorhölter FJ
    J Biotechnol; 2013 Aug; 167(2):123-34. PubMed ID: 23395674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100.
    Schulte F; Leßmeier L; Voss J; Ortseifen V; Vorhölter FJ; Niehaus K
    FEMS Microbiol Lett; 2019 Jan; 366(2):. PubMed ID: 30649298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta.
    Vojnov AA; Slater H; Daniels MJ; Dow JM
    Mol Plant Microbe Interact; 2001 Jun; 14(6):768-74. PubMed ID: 11386372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation.
    Čuklina J; Hahn J; Imakaev M; Omasits U; Förstner KU; Ljubimov N; Goebel M; Pessi G; Fischer HM; Ahrens CH; Gelfand MS; Evguenieva-Hackenberg E
    BMC Genomics; 2016 Apr; 17():302. PubMed ID: 27107716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris.
    Su HZ; Wu L; Qi YH; Liu GF; Lu GT; Tang JL
    Sci Rep; 2016 Jan; 6():19862. PubMed ID: 26818230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris.
    Leßmeier L; Alkhateeb RS; Schulte F; Steffens T; Loka TP; Pühler A; Niehaus K; Vorhölter FJ
    J Biotechnol; 2016 Aug; 232():89-98. PubMed ID: 27060555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape.
    Irla M; Neshat A; Brautaset T; Rückert C; Kalinowski J; Wendisch VF
    BMC Genomics; 2015 Feb; 16(1):73. PubMed ID: 25758049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae.
    Kim SY; Kim JG; Lee BM; Cho JY
    Biotechnol Lett; 2009 Feb; 31(2):265-70. PubMed ID: 18854951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Draft genome of the xanthan producer Xanthomonas campestris NRRL B-1459 (ATCC 13951).
    Wibberg D; Alkhateeb RS; Winkler A; Albersmeier A; Schatschneider S; Albaum S; Niehaus K; Hublik G; Pühler A; Vorhölter FJ
    J Biotechnol; 2015 Jun; 204():45-6. PubMed ID: 25865276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions.
    Schmidtke C; Findeiss S; Sharma CM; Kuhfuss J; Hoffmann S; Vogel J; Stadler PF; Bonas U
    Nucleic Acids Res; 2012 Mar; 40(5):2020-31. PubMed ID: 22080557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris.
    Vojnov AA; Zorreguieta A; Dow JM; Daniels MJ; Dankert MA
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1487-1493. PubMed ID: 9639919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome sequence of Xanthomonas campestris JX, an industrially productive strain for Xanthan gum.
    Tao F; Wang X; Ma C; Yang C; Tang H; Gai Z; Xu P
    J Bacteriol; 2012 Sep; 194(17):4755-6. PubMed ID: 22887662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism.
    Rao YM; Sureshkumar GK
    Biotechnol Bioeng; 2001 Jan; 72(1):62-8. PubMed ID: 11084595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.