BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26975884)

  • 1. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass.
    Chai KP; Othman NF; Teh AH; Ho KL; Chan KG; Shamsir MS; Goh KM; Ng CL
    Sci Rep; 2016 Mar; 6():23126. PubMed ID: 26975884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase.
    Ranjani V; Janeček S; Chai KP; Shahir S; Abdul Rahman RN; Chan KG; Goh KM
    Sci Rep; 2014 Jul; 4():5850. PubMed ID: 25069018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of α-Amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead Supports.
    Kahar UM; Sani MH; Chan KG; Goh KM
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27618002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose.
    Chai YY; Rahman RN; Illias RM; Goh KM
    J Ind Microbiol Biotechnol; 2012 May; 39(5):731-41. PubMed ID: 22246222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13.
    Liu Y; Yu J; Li F; Peng H; Zhang X; Xiao Y; He C
    Sci Rep; 2017 Mar; 7():44067. PubMed ID: 28303907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure of Novamyl, the five-domain "maltogenic" alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution.
    Dauter Z; Dauter M; Brzozowski AM; Christensen S; Borchert TV; Beier L; Wilson KS; Davies GJ
    Biochemistry; 1999 Jun; 38(26):8385-92. PubMed ID: 10387084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a compact α-amylase from Geobacillus thermoleovorans.
    Mok SC; Teh AH; Saito JA; Najimudin N; Alam M
    Enzyme Microb Technol; 2013 Jun; 53(1):46-54. PubMed ID: 23683704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Bacillus halmapalus alpha-amylase crystallized with and without the substrate analogue acarbose and maltose.
    Lyhne-Iversen L; Hobley TJ; Kaasgaard SG; Harris P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Sep; 62(Pt 9):849-54. PubMed ID: 16946462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a novel α-amylase AmyB from Thermotoga neapolitana that produces maltose from the nonreducing end of polysaccharides.
    Jun SY; Kim JS; Choi KH; Cha J; Ha NC
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):442-50. PubMed ID: 23519419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes.
    Brzozowski AM; Lawson DM; Turkenburg JP; Bisgaard-Frantzen H; Svendsen A; Borchert TV; Dauter Z; Wilson KS; Davies GJ
    Biochemistry; 2000 Aug; 39(31):9099-107. PubMed ID: 10924103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 angstroms resolution.
    Vujicić-Zagar A; Dijkstra BW
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Aug; 62(Pt 8):716-21. PubMed ID: 16880540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution.
    Machius M; Wiegand G; Huber R
    J Mol Biol; 1995 Mar; 246(4):545-59. PubMed ID: 7877175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline alpha-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins.
    Shirai T; Igarashi K; Ozawa T; Hagihara H; Kobayashi T; Ozaki K; Ito S
    Proteins; 2007 Feb; 66(3):600-10. PubMed ID: 17154418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications.
    Slavić MŠ; Kojić M; Margetić A; Stanisavljević N; Gardijan L; Božić N; Vujčić Z
    Int J Biol Macromol; 2023 Sep; 249():126055. PubMed ID: 37524287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad.
    Machius M; Declerck N; Huber R; Wiegand G
    Structure; 1998 Mar; 6(3):281-92. PubMed ID: 9551551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermostable, Ca(2+)-independent, and high maltose-forming alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans: whole cell immobilization.
    Rao JL; Satyanarayana T
    Appl Biochem Biotechnol; 2009 Nov; 159(2):464-77. PubMed ID: 19280125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1.
    Plaza-Vinuesa L; Hernandez-Hernandez O; Moreno FJ; de Las Rivas B; Muñoz R
    Microb Cell Fact; 2019 Oct; 18(1):183. PubMed ID: 31655584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose.
    Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S
    Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL.
    Liao SM; Liang G; Zhu J; Lu B; Peng LX; Wang QY; Wei YT; Zhou GP; Huang RB
    Protein Pept Lett; 2019; 26(2):148-157. PubMed ID: 30652633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.