These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26975976)
1. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding. Jones PM; George AM Sci Rep; 2016 Mar; 6():23174. PubMed ID: 26975976 [TBL] [Abstract][Full Text] [Related]
2. In Silico Investigation of the Binding of MCoTI-II Plant Defense Knottin to the γ-NGF Serine Protease of the 7S Nerve Growth Factor Complex and Biological Activity of Its NGF Mimetic Properties. Jones PM; Mazzio E; Soliman K; George AM J Phys Chem B; 2019 Oct; 123(43):9104-9110. PubMed ID: 31580077 [TBL] [Abstract][Full Text] [Related]
3. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. Cemazar M; Daly NL; Häggblad S; Lo KP; Yulyaningsih E; Craik DJ J Biol Chem; 2006 Mar; 281(12):8224-32. PubMed ID: 16547012 [TBL] [Abstract][Full Text] [Related]
4. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. Felizmenio-Quimio ME; Daly NL; Craik DJ J Biol Chem; 2001 Jun; 276(25):22875-82. PubMed ID: 11292835 [TBL] [Abstract][Full Text] [Related]
5. Fragmentation follows structure: top-down mass spectrometry elucidates the topology of engineered cystine-knot miniproteins. Reinwarth M; Avrutina O; Fabritz S; Kolmar H PLoS One; 2014; 9(10):e108626. PubMed ID: 25303319 [TBL] [Abstract][Full Text] [Related]
6. Backbone dynamics of cyclotide MCoTI-I free and complexed with trypsin. Puttamadappa SS; Jagadish K; Shekhtman A; Camarero JA Angew Chem Int Ed Engl; 2010 Sep; 49(39):7030-4. PubMed ID: 20715250 [No Abstract] [Full Text] [Related]
7. Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor. Daly NL; Thorstholm L; Greenwood KP; King GJ; Rosengren KJ; Heras B; Martin JL; Craik DJ J Biol Chem; 2013 Dec; 288(50):36141-8. PubMed ID: 24169696 [TBL] [Abstract][Full Text] [Related]
8. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Abdul Ghani H; Henriques ST; Huang YH; Swedberg JE; Schroeder CI; Craik DJ Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27487329 [TBL] [Abstract][Full Text] [Related]
9. Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. Glotzbach B; Reinwarth M; Weber N; Fabritz S; Tomaszowski M; Fittler H; Christmann A; Avrutina O; Kolmar H PLoS One; 2013; 8(10):e76956. PubMed ID: 24146945 [TBL] [Abstract][Full Text] [Related]
10. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Hernandez JF; Gagnon J; Chiche L; Nguyen TM; Andrieu JP; Heitz A; Trinh Hong T; Pham TT; Le Nguyen D Biochemistry; 2000 May; 39(19):5722-30. PubMed ID: 10801322 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. Cascales L; Henriques ST; Kerr MC; Huang YH; Sweet MJ; Daly NL; Craik DJ J Biol Chem; 2011 Oct; 286(42):36932-43. PubMed ID: 21873420 [TBL] [Abstract][Full Text] [Related]
12. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766 [TBL] [Abstract][Full Text] [Related]
13. Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II. Avrutina O; Schmoldt HU; Gabrijelcic-Geiger D; Le Nguyen D; Sommerhoff CP; Diederichsen U; Kolmar H Biol Chem; 2005 Dec; 386(12):1301-6. PubMed ID: 16336125 [TBL] [Abstract][Full Text] [Related]
14. Targeted Delivery of Cyclotides via Conjugation to a Nanobody. Kwon S; Duarte JN; Li Z; Ling JJ; Cheneval O; Durek T; Schroeder CI; Craik DJ; Ploegh HL ACS Chem Biol; 2018 Oct; 13(10):2973-2980. PubMed ID: 30248263 [TBL] [Abstract][Full Text] [Related]
17. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Cemazar M; Joshi A; Daly NL; Mark AE; Craik DJ Structure; 2008 Jun; 16(6):842-51. PubMed ID: 18547517 [TBL] [Abstract][Full Text] [Related]
18. Interrogating and predicting tolerated sequence diversity in protein folds: application to E. elaterium trypsin inhibitor-II cystine-knot miniprotein. Lahti JL; Silverman AP; Cochran JR PLoS Comput Biol; 2009 Sep; 5(9):e1000499. PubMed ID: 19730675 [TBL] [Abstract][Full Text] [Related]
19. Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. Thongyoo P; Bonomelli C; Leatherbarrow RJ; Tate EW J Med Chem; 2009 Oct; 52(20):6197-200. PubMed ID: 19772295 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Mahatmanto T; Poth AG; Mylne JS; Craik DJ Fitoterapia; 2014 Jun; 95():22-33. PubMed ID: 24613804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]