BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26976328)

  • 1. Developing informative microsatellite markers for non-model species using reference mapping against a model species' genome.
    Hung CM; Yu AY; Lai YT; Shaner PJ
    Sci Rep; 2016 Mar; 6():23087. PubMed ID: 26976328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and cost-effective approach for the development of polymorphic microsatellites in non-model species using paired-end RAD sequencing.
    Xue DX; Li YL; Liu JX
    Mol Genet Genomics; 2017 Oct; 292(5):1165-1174. PubMed ID: 28634825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae).
    Bonatelli IA; Carstens BC; Moraes EM
    PLoS One; 2015; 10(11):e0142602. PubMed ID: 26561396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads.
    Silva PI; Martins AM; Gouvea EG; Pessoa-Filho M; Ferreira ME
    BMC Genomics; 2013 Jan; 14():17. PubMed ID: 23324172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.
    Khajuria YP; Saxena MS; Gaur R; Chattopadhyay D; Jain M; Parida SK; Bhatia S
    PLoS One; 2015; 10(5):e0125583. PubMed ID: 25974327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus.
    Brondani RP; Williams ER; Brondani C; Grattapaglia D
    BMC Plant Biol; 2006 Sep; 6():20. PubMed ID: 16995939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.
    Abdelkrim J; Robertson B; Stanton JA; Gemmell N
    Biotechniques; 2009 Mar; 46(3):185-92. PubMed ID: 19317661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Genomic Microsatellite Markers in Carthamus tinctorius L. (Safflower) Using Next Generation Sequencing and Assessment of Their Cross-Species Transferability and Utility for Diversity Analysis.
    Ambreen H; Kumar S; Variath MT; Joshi G; Bali S; Agarwal M; Kumar A; Jagannath A; Goel S
    PLoS One; 2015; 10(8):e0135443. PubMed ID: 26287743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different high throughput sequencing approaches identify thousands of de novo genomic markers for the genetically depleted Bornean elephant.
    Sharma R; Goossens B; Kun-Rodrigues C; Teixeira T; Othman N; Boone JQ; Jue NK; Obergfell C; O'Neill RJ; Chikhi L
    PLoS One; 2012; 7(11):e49533. PubMed ID: 23185354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mapping and breeding with microsatellite markers.
    Lightfoot DA; Iqbal MJ
    Methods Mol Biol; 2013; 1006():297-317. PubMed ID: 23546799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.).
    Ritschel PS; Lins TC; Tristan RL; Buso GS; Buso JA; Ferreira ME
    BMC Plant Biol; 2004 May; 4():9. PubMed ID: 15149552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of multiplex panels of microsatellite markers for Syphacia obvelata, a parasite of the house mouse (Mus musculus), using a high throughput DNA sequencing approach.
    Wasimuddin ; Čížková D; Ribas A; Piálek J; de Bellocq JG; Bryja J
    Mol Biochem Parasitol; 2012 Oct; 185(2):154-6. PubMed ID: 22820294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species.
    Xia Y; Luo W; Yuan S; Zheng Y; Zeng X
    BMC Genomics; 2018 Dec; 19(1):886. PubMed ID: 30526480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping.
    Covarrubias-Pazaran G; Diaz-Garcia L; Schlautman B; Deutsch J; Salazar W; Hernandez-Ochoa M; Grygleski E; Steffan S; Iorizzo M; Polashock J; Vorsa N; Zalapa J
    BMC Genomics; 2016 Jun; 17():451. PubMed ID: 27295982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei.
    Yu Y; Zhang X; Yuan J; Li F; Chen X; Zhao Y; Huang L; Zheng H; Xiang J
    Sci Rep; 2015 Oct; 5():15612. PubMed ID: 26503227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EST-derived microsatellites from Actinidia species and their potential for mapping.
    Fraser LG; Harvey CF; Crowhurst RN; De Silva HN
    Theor Appl Genet; 2004 Apr; 108(6):1010-6. PubMed ID: 15067386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims).
    Araya S; Martins AM; Junqueira NTV; Costa AM; Faleiro FG; Ferreira ME
    BMC Genomics; 2017 Jul; 18(1):549. PubMed ID: 28732469
    [TBL] [